Method for nonlocal improvement of extreme controls in the maximization of the terminal state norm
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 791-804 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical approach is applied to the maximization of a positive definite quadratic form on the set of terminal states of a linear system with interval constraints on the control. An optimality criterion is used to develop a method for nonlocal improvement of controls satisfying the maximum principle (extreme points of the reachable set). The iterative procedure of the method is proved to converge. Numerical results are presented.
@article{ZVMMF_2009_49_5_a2,
     author = {V. G. Antonik and V. A. Srochko},
     title = {Method for nonlocal improvement of extreme controls in the maximization of the terminal state norm},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {791--804},
     year = {2009},
     volume = {49},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a2/}
}
TY  - JOUR
AU  - V. G. Antonik
AU  - V. A. Srochko
TI  - Method for nonlocal improvement of extreme controls in the maximization of the terminal state norm
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 791
EP  - 804
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a2/
LA  - ru
ID  - ZVMMF_2009_49_5_a2
ER  - 
%0 Journal Article
%A V. G. Antonik
%A V. A. Srochko
%T Method for nonlocal improvement of extreme controls in the maximization of the terminal state norm
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 791-804
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a2/
%G ru
%F ZVMMF_2009_49_5_a2
V. G. Antonik; V. A. Srochko. Method for nonlocal improvement of extreme controls in the maximization of the terminal state norm. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 791-804. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a2/

[1] Chernousko F. L., Banichuk N. V., Variatsionnye zadachi mekhaniki i upravleniya (chislennye metody), Nauka, M., 1973

[2] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[3] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[4] Gabasov R., Kirillova F. M., Konstruktivnye metody optimizatsii. Ch. 2. Zadachi upravleniya, Universitetskoe, Minsk, 1984 | MR

[5] Vasilev O. V., Lektsii po metodam optimizatsii, Izd-vo IGU, Irkutsk, 1994

[6] Baturin V. A., Urbanovich D. E., Priblizhennye metody optimalnogo upravleniya, osnovannye na printsipe rasshireniya, Nauka, Novosibirsk, 1997 | MR | Zbl

[7] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[8] Srochko V. A., Ushakova S. N., “Metod polnoi kvadratichnoi approksimatsii v zadachakh optimalnogo upravleniya”, Izv. vuzov. Matematika, 2004, no. 1, 87–93 | MR | Zbl

[9] Strekalovskii A. C., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[10] Strekalovskii A. C., Sharankhaeva E. V., “Globalnyi poisk v nevypukloi zadache optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1785–1800 | MR | Zbl

[11] Strekalovskii A. C., “Zadachi optimalnogo upravleniya s terminalnymi funktsionalami, predstavlennymi v vide raznosti dvukh vypuklykh funktsii”, Zh. vychisl. matem. i matem. fiz., 47:11 (2007), 1865–1879 | MR

[12] Enkhbat R., “On some theory, methods and algorithms for concave programming”, Optimizat. and Optimal Control., Ser. Comput. Oper. Res., 1, World Scient. Pubis Co., 2003, 79–102 | MR | Zbl

[13] Aleksandrov B. B., “O nakoplenii vozmuschenii v lineinykh sistemakh po dvum koordinatam”, Vestn. MGU. Ser. matem., mekhan., 1968, no. 3, 67–76 | Zbl

[14] Gabasov R., Kirillova F. M., Optimizatsiya lineinykh sistem, Izd-vo Belorusskogo un-ta, Minsk, 1973 | MR

[15] Tkachev A. M., “Geometricheskii metod resheniya zadachi maksimizatsii normy vektora sostoyaniya sistemy na konechnom intervale upravleniya”, Prikl. matem. i mekhan., 54:6 (1990), 1036–1039 | MR | Zbl

[16] Aleksandrov V. V., Boltyanskii V. G., Lemak S. S. i dr., Optimalnoe upravlenie dvizheniem, Fizmatlit, M., 2005

[17] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR

[18] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[19] Bulatov V. P., Metody pogruzheniya v zadachakh optimizatsii, Nauka, Novosibirsk, 1977 | MR | Zbl

[20] Krylov I. A., Chernousko F. L., “O metode posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1132–1139 | MR | Zbl

[21] Antonik V. G., Vetrova A. L., “Protsedury nelokalnogo uluchsheniya v nevypuklykh zadachakh optimalnogo upravleniya”, Optimizatsiya, upravlenie, intellekt. Irkutsk: Izd-vo IDSTU SO RAN, 6 (2002), 36–42

[22] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zh. vychisl. matem. i matem. fiz., 40:6 (2000), 838–859 | MR | Zbl