Stability analysis of the plane Couette flow for a model kinetic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 902-915 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stability of the plane Couette flow is studied using the simplified Boltzmann equation (the BGK equation) in which the high modes in the space of velocities and coordinates are truncated. The solution to the Navier–Stokes equation with small additional terms depending on the Knudsen number is used as the stationary solution. We assume that the perturbations depend only on the coordinate that is orthogonal to the flow. The density perturbations are assumed to be nonzero. In this approximation, the problem is found to be unstable in the case of small Knudsen numbers.
@article{ZVMMF_2009_49_5_a11,
     author = {O. V. Ilyin},
     title = {Stability analysis of the plane {Couette} flow for a~model kinetic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {902--915},
     year = {2009},
     volume = {49},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a11/}
}
TY  - JOUR
AU  - O. V. Ilyin
TI  - Stability analysis of the plane Couette flow for a model kinetic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 902
EP  - 915
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a11/
LA  - ru
ID  - ZVMMF_2009_49_5_a11
ER  - 
%0 Journal Article
%A O. V. Ilyin
%T Stability analysis of the plane Couette flow for a model kinetic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 902-915
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a11/
%G ru
%F ZVMMF_2009_49_5_a11
O. V. Ilyin. Stability analysis of the plane Couette flow for a model kinetic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 902-915. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a11/

[1] Romanov V. A., “Ustoichivost ploskoparallelnogo techeniya Kuetta”, Funkts. analiz i ego prilozh., 7:2 (1973), 62–73 | MR | Zbl

[2] Kadchenko S. I., “Reshenie problemy ustoichivosti ploskogo techeniya Kuetta”, Vestn. MAGU, 2003, no. 4, 800–99

[3] Skorokhodov S. L., “Chislennyi analiz spektra zadachi Orra–Zommerfelda”, Zh. vychisl. matem. i matem. fiz., 47:10 (2007), 1672–1691 | MR

[4] Zhuk V. I., Protsenko I. G., “Asimptoticheskaya struktura volnovykh vozmuschenii v teorii ustoichivosti ploskogo techeniya Kuetta–Puazeilya”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 1060–1080 | MR

[5] Boiko A. B., Grek G. R., Dovgal A. B., Kozlov V. V., Vozniknovenie turbulentnosti v pristennykh techeniyakh, Nauka, Novosibirsk, 1999 | MR

[6] Tillmark N., Alfredsson P., “Experiments on transition in plane Couette flow”, J. Fluid Mech., 235 (1992), 89–102 | DOI

[7] Sone Y., Doi T., “Instability of the plane Couette flow by the ghost effect infinitesimal curvature”, Proc. 24th Intern. Symp. RGD, Mellville, New York, 2005, 258–263

[8] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[9] Cherninyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[10] Aristov V. V., “Resheniya uravneniya Boltsmana pri malykh chislakh Knudsena”, Zh. vychisl. matem. i matem. fiz., 44:6 (2004), 1127–1140 | MR | Zbl

[11] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1986 | MR

[12] Kuznetsov D. S., Spetsialnye funktsii, Vyssh. shkola, M., 1962