Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 776-790 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.
@article{ZVMMF_2009_49_5_a1,
     author = {V. K. Bulgakov and V. V. Strigunov},
     title = {Optimal control and optimal trajectories of regional macroeconomic dynamics based on the {Pontryagin} maximum principle},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {776--790},
     year = {2009},
     volume = {49},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a1/}
}
TY  - JOUR
AU  - V. K. Bulgakov
AU  - V. V. Strigunov
TI  - Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 776
EP  - 790
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a1/
LA  - ru
ID  - ZVMMF_2009_49_5_a1
ER  - 
%0 Journal Article
%A V. K. Bulgakov
%A V. V. Strigunov
%T Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 776-790
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a1/
%G ru
%F ZVMMF_2009_49_5_a1
V. K. Bulgakov; V. V. Strigunov. Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 776-790. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a1/

[1] Bulgakov V. K., Strigunov V. V., Issledovanie odnoi matematicheskoi modeli makroekonomiki regiona RF, reshenie zadachi optimalnogo upravleniya, Preprint No 96, VTs DVO RAN, Khabarovsk, 2006

[2] Bulgakov V. K., Bulgakov O. V., “Modelirovanie dinamiki obobschayuschikh pokazatelei razvitiya regionalnykh ekonomicheskikh sistem Rossii”, Ekonomika i matem. metody, 42:1 (2006), 32–49 | Zbl

[3] Pontryagin L. S. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[4] Pontryagin L. S., Izbrannye nauchnye trudy, T. II, Nauka, M., 1988

[5] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, Uspekhi matem. nauk, 23:1 (1968), 45–90 | MR

[6] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982 | MR | Zbl