On a recursive inverse eigenvalue problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 771-775
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $s_1,\dots,s_n$ – be arbitrary complex scalars. It is required to construct an $n\times n$ normal matrix $A$ such that $s_i$ is an eigenvalue of the leading principal submatrix $A_i$, $i=1,2,\dots,n$. It is shown that, along with the obvious diagonal solution $\operatorname{diag}(s_1,\dots,s_n)$, this problem always admits a much more interesting nondiagonal solution $A$. As a rule, this solution is a dense matrix; with the diagonal solution, it shares the property that each submatrix $A_i$ is itself a normal matrix, which implies interesting connections between the spectra of the neighboring submatrices $A_i$ and $A_{i+1}$.
@article{ZVMMF_2009_49_5_a0,
author = {Kh. D. Ikramov},
title = {On a~recursive inverse eigenvalue problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {771--775},
publisher = {mathdoc},
volume = {49},
number = {5},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a0/}
}
Kh. D. Ikramov. On a recursive inverse eigenvalue problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 771-775. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a0/