Mortar method for matching grids in a mixed scheme as applied to the biharmonic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 681-695 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nitsche's mortar method for matching grids in the Hermann–Miyoshi mixed scheme for the biharmonic equation is considered. A two-parameter mortar problem is constructed and analyzed. Existence and uniqueness theorems are proved under certain constraints on the parameters. The norm of the difference between the solutions to the mortar and original problems is estimated. The convergence rates are the same as in the Hermann–Miyoshi scheme on matching grids.
@article{ZVMMF_2009_49_4_a9,
     author = {L. V. Maslovskaya and O. M. Maslovskaya},
     title = {Mortar method for matching grids in a~mixed scheme as applied to the biharmonic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {681--695},
     year = {2009},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a9/}
}
TY  - JOUR
AU  - L. V. Maslovskaya
AU  - O. M. Maslovskaya
TI  - Mortar method for matching grids in a mixed scheme as applied to the biharmonic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 681
EP  - 695
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a9/
LA  - ru
ID  - ZVMMF_2009_49_4_a9
ER  - 
%0 Journal Article
%A L. V. Maslovskaya
%A O. M. Maslovskaya
%T Mortar method for matching grids in a mixed scheme as applied to the biharmonic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 681-695
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a9/
%G ru
%F ZVMMF_2009_49_4_a9
L. V. Maslovskaya; O. M. Maslovskaya. Mortar method for matching grids in a mixed scheme as applied to the biharmonic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 681-695. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a9/

[1] Babuska I., “Eroor-bounds for finite element method”, Numer. Math., 16 (1971), 322–333 | DOI | MR | Zbl

[2] Nitsche J. A., “Convergence of nonconforming methods”, Math. Aspects of Finite Elements in Partial Differential Equations, Academic Press, New York, 1974, 15–53 | MR

[3] Becker R., Hansbo P., Stenberg R., “A finite element method for domain decomposition with non-matching grids”, Math. Model. and Numer. Analys., 37:2 (2003), 209–225 | DOI | MR | Zbl

[4] Le Talles P., Sassi T., “Domain decomposition with nonmatching grids: augmented Lagrangian approach”, Math. Comp., 64 (1995), 1367–1396 | DOI | MR

[5] Babuska I., “The finite element method with penalty”, Math. Comp., 27 (1973), 221–228 | DOI | MR | Zbl

[6] Aubin J. P., “Approximation des problemes aux limites non homogenes et regularite de la convergence”, Calcolo, 6 (1969), 117–139 | DOI

[7] Maslovskaya L. V., Maslovskaya O. M., “A penalty method for grids matching in finite element methods”, Izvestiya VUZOV. Mathematics, 10 (2006), 33–43 | MR

[8] Maslovskaya L. V., Maslovskaya O. M., Some methods of grids matching in finite elements method, Kazan. 21–24 September 2007, 186–189

[9] Brezzi F., Raviart P. A., “Mixed finite element methods for 4th order elliptic equations”, SIAM J. Numer. Analys., 3 (1976), 315–338 | MR

[10] Falk R. S., Osborn J. E., “Error estimates for mixed methods R.A.I.R.O”, Analys. Numer., 14:3 (1980), 249–277 | MR | Zbl

[11] Babuska I., Osborn J., Pitkaranta J., “Analysis of mixed methods using mesh dependent norms”, Math. Comput., 35 (1980), 1039–1062 | DOI | MR | Zbl

[12] Maslovskaya L. V., “The behavior of the solution of biharmonic equation in domains with edge points”, Differential Equat., 19:12 (1983), 2172–2175 | MR | Zbl

[13] Ciarlet Ph., The finite element method for elliptic problems, Mir, M., 1980 | MR | Zbl

[14] Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers”, R.A.I.R.O. R2, 8 (1974), 129–151 | MR | Zbl