@article{ZVMMF_2009_49_4_a8,
author = {H.-m. Gu and H.-w. Li},
title = {An adaptive lsmfe method for {Burgers} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {671--680},
year = {2009},
volume = {49},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a8/}
}
H.-m. Gu; H.-w. Li. An adaptive lsmfe method for Burgers equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 671-680. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a8/
[1] Aziz A. K., Kellogg R. B., Stephens A. B., “Least-squares methods for elliptic systems”, Math. Comput., 44 (1985), 59–70 | MR
[2] Gu Halmlng, Yang Dangplng, Sul Shulin, Liu Xinmin, “Least-squares mixed finite element method for a class of Stokes equation”, Appl. Math. and Mech., 21:5 (2000), 557–566 | DOI | MR
[3] Gu Hai-ming, Xu Xiu-ling, “The least-squares mixed finite element methods for a degenerate elliptic problem”, Math. Appl., 15:1 (2002), 118–122 | MR | Zbl
[4] Cal Zhiqing, Lee Barry, Wang Ping, “Least-squares methods for incompressible Newtonianfluid flow: Linear stationary problems”, SIAM J. Numer. Analys, 42 (2004), 843–859 | DOI | MR
[5] Malschak M., Stephan E. P., “A Least squares coupling method with finite elements and boundary elements for transmission problems”, Comput. Math. Appl., 48 (2004), 995–1016 | DOI | MR
[6] Gu Haiming, Yang Danping, “Least-squares mixed finite element method for Sobolev equations”, Indian J. Pure Appl. Math., 31:5 (2000), 505–517 | MR | Zbl
[7] Kim M. -Y., Park E.-J., Park J., “Mixed finite element domain decomposition for nonlinear parabolic problems”, Comput. Math. Appl., 40 (2000), 1061–1070 | DOI | MR | Zbl
[8] Cal Zhlquan, Korsawe J., Starke G., “An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity”, Numer. Meth. Partial Different. Equat., 21 (2005), 132–148 | DOI | MR
[9] Yang Suh-Yuh, “Analysis of a least squares finite element method for the circular arch problem”, Appl. Math. Comput., 114 (2000), 263–278 | DOI | MR | Zbl
[10] Li X., Shephardand M. S., Beall M. W., 3D Anisotropic mesh adaptation using mesh modifications, Submitte to Comput. Math. Appl. Mech. Engng., 2003
[11] Luo Z. D., Theoretical bases for mixed finite element methods and application, Science Press, Beijing, 2006 (in Chinese)