An adaptive lsmfe method for Burgers equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 671-680 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An adaptive least-squares mixed finite element method for Burgers equations is proposed and analyzed. A posteriori error estimates are obtained that are used to adaptively improve the algorithm. The least-squares functional is locally computed and is used as an effectively calculated a posteriori error estimate.
@article{ZVMMF_2009_49_4_a8,
     author = {H.-m. Gu and H.-w. Li},
     title = {An adaptive lsmfe method for {Burgers} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {671--680},
     year = {2009},
     volume = {49},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a8/}
}
TY  - JOUR
AU  - H.-m. Gu
AU  - H.-w. Li
TI  - An adaptive lsmfe method for Burgers equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 671
EP  - 680
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a8/
LA  - en
ID  - ZVMMF_2009_49_4_a8
ER  - 
%0 Journal Article
%A H.-m. Gu
%A H.-w. Li
%T An adaptive lsmfe method for Burgers equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 671-680
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a8/
%G en
%F ZVMMF_2009_49_4_a8
H.-m. Gu; H.-w. Li. An adaptive lsmfe method for Burgers equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 671-680. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a8/

[1] Aziz A. K., Kellogg R. B., Stephens A. B., “Least-squares methods for elliptic systems”, Math. Comput., 44 (1985), 59–70 | MR

[2] Gu Halmlng, Yang Dangplng, Sul Shulin, Liu Xinmin, “Least-squares mixed finite element method for a class of Stokes equation”, Appl. Math. and Mech., 21:5 (2000), 557–566 | DOI | MR

[3] Gu Hai-ming, Xu Xiu-ling, “The least-squares mixed finite element methods for a degenerate elliptic problem”, Math. Appl., 15:1 (2002), 118–122 | MR | Zbl

[4] Cal Zhiqing, Lee Barry, Wang Ping, “Least-squares methods for incompressible Newtonianfluid flow: Linear stationary problems”, SIAM J. Numer. Analys, 42 (2004), 843–859 | DOI | MR

[5] Malschak M., Stephan E. P., “A Least squares coupling method with finite elements and boundary elements for transmission problems”, Comput. Math. Appl., 48 (2004), 995–1016 | DOI | MR

[6] Gu Haiming, Yang Danping, “Least-squares mixed finite element method for Sobolev equations”, Indian J. Pure Appl. Math., 31:5 (2000), 505–517 | MR | Zbl

[7] Kim M. -Y., Park E.-J., Park J., “Mixed finite element domain decomposition for nonlinear parabolic problems”, Comput. Math. Appl., 40 (2000), 1061–1070 | DOI | MR | Zbl

[8] Cal Zhlquan, Korsawe J., Starke G., “An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity”, Numer. Meth. Partial Different. Equat., 21 (2005), 132–148 | DOI | MR

[9] Yang Suh-Yuh, “Analysis of a least squares finite element method for the circular arch problem”, Appl. Math. Comput., 114 (2000), 263–278 | DOI | MR | Zbl

[10] Li X., Shephardand M. S., Beall M. W., 3D Anisotropic mesh adaptation using mesh modifications, Submitte to Comput. Math. Appl. Mech. Engng., 2003

[11] Luo Z. D., Theoretical bases for mixed finite element methods and application, Science Press, Beijing, 2006 (in Chinese)