@article{ZVMMF_2009_49_4_a6,
author = {A. G. Makeev and N. L. Semendiayeva},
title = {Parametric continuation of the solitary traveling pulse solution in the reaction-diffusion system using the {Newton{\textendash}Krylov} method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {646--661},
year = {2009},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a6/}
}
TY - JOUR AU - A. G. Makeev AU - N. L. Semendiayeva TI - Parametric continuation of the solitary traveling pulse solution in the reaction-diffusion system using the Newton–Krylov method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 646 EP - 661 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a6/ LA - ru ID - ZVMMF_2009_49_4_a6 ER -
%0 Journal Article %A A. G. Makeev %A N. L. Semendiayeva %T Parametric continuation of the solitary traveling pulse solution in the reaction-diffusion system using the Newton–Krylov method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 646-661 %V 49 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a6/ %G ru %F ZVMMF_2009_49_4_a6
A. G. Makeev; N. L. Semendiayeva. Parametric continuation of the solitary traveling pulse solution in the reaction-diffusion system using the Newton–Krylov method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 646-661. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a6/
[1] Dhooge A., Govaerts W., Kuznetsov Yu. A., “MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs”, ACM Trans. Math. Software, 29:2 (2003), 141–164 | DOI | MR | Zbl
[2] Saad Y., Schultz M. H., GMRES: A generalized minimal residual algorithm for solving non-symetric linear systems, Res. Rep. YALEU/DCS/RR254, August 24, 1983; SIAM J. Sci. Stat. Comput., 7:3 (1986), 856–869 | DOI | MR | Zbl
[3] Gear C. W., Saad Y., “Iterative solution of linear equations in ode codes”, SIAM J. Sci. Stat. Comput., 4:4 (1983), 583–601 | DOI | MR | Zbl
[4] Wigton L. B., Yu N. J., Young D. P., “GMRES acceleration of computational fluid dynamics codes”, Proc. 7th AIAA CFD Conf., 1985, 67–74
[5] Brown P. N., Hindmarsh A. C., “Matrix-free methods for stiff systems of ode's”, SIAM J. Numer. Analys, 2:3 (1986), 610–638 | DOI | MR
[6] Brown P. N., Saad Y., “Hybrid Krylov methods for nonlinear systems of equations”, SIAM J. Sci. Stat. Comput., 11:3 (1990), 450–481 | DOI | MR | Zbl
[7] Knoll D. A., Keyes D. E., “Jacobian-free Newton–Krylov methods: a survey of approaches and applications”, J. Comput. Phys., 193:2 (2004), 357–397 | DOI | MR | Zbl
[8] Tuckerman L., Barkley D., “Bifurcation analysis for timesteppers”, Numer. Meth. for Bifurcation Problems and Large-Scale Dynamical Systems, Springer, New York, 2000, 453–566 | MR
[9] Kelley C. T., Kevrekidis I. G., Qiao L., Newton–Krylov solvers for timesteppers, arxiv.org/pdf/math.DS/0404374
[10] Kelley C. T., Solving nonlinear equations with Newton's method, SIAM, Philadelphia, 2003 | MR
[11] Kurkina E. S., Semendyaeva N. L., “Fluctuation-induced transitions and oscillations in catalytic CO oxidation: Monte Carlo simulations”, Surface. Sci., 558:1–3 (2004), 122–134 | DOI
[12] Kurkina E. C., Semendyaeva H. L., “Issledovanie kolebatelnykh rezhimov v stokhasticheskoi modeli v geterogennoi kataliticheskoi reaktsii”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1808–1823 | MR | Zbl
[13] Kness M., Tuckerman L. S., Barkley D., “Symmetry-breaking bifurcations in one-dimensional excitable media”, Phys. Rev. A, 46:8 (1992), 5054–5062 | DOI
[14] Keller H. B., “Numerical solution of bifurcation and nonlinear eigenvalue problems”, Applic. Bifurcation Theory, Acad. Press, New York, 1977, 359–384 | MR
[15] Seydel R., “Tutorial on continuation”, Internat. J. Bifurcation. Chaos, 1:1 (1991), 3–11 | DOI | MR | Zbl
[16] Dembo R. S., Eisenstat S. C., Steihaug T., “Inexact Newton methods”, SIAM J. Numer. Analis, 19:2 (1982), 400–408 | DOI | MR | Zbl
[17] Eisenstat S. C., Walker H. E., “Choosing the forcing terms in an inexact newton method”, SIAM J. Sci. Comput., 17:1 (1996), 16–32 | DOI | MR | Zbl
[18] Makeev A. G., Maraudas D., Kevrekidis l.G., ““Coarse” stability and bifurcation analysis using stochastic simulators: kinetic Monte Carlo examples”, J. Chem. Phys., 116:23 (2002), 10083–10091 | DOI
[19] Makeev A. G., Maraudas D., Panagiatapaulas A. Z., Kevrekidis I. G., “Coarse bifurcation analysis of kinetic Monte Carlo simulations: a lattice-gas model with lateral interactions”, J. Chem. Phys., 117:18 (2002), 8229–8240 | DOI
[20] Or-Guil M., Kevrekidis I. G., Bär M., “Stable bound states of pulses in an excitable medium”, Physica D, 135:1–2 (2000), 154–174 | DOI | MR | Zbl