Ray expansions of solutions around fronts as a shock-fitting tool for shock loading simulation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 722-733 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In shock loading computations based on an implicit finite-difference scheme, the surfaces of velocity discontinuity and the discontinuity sizes are determined by computing an asymptotic (ray) expansion of the solution behind the front surfaces at every time step. The method for constructing ray expansions is based on a recurrence formulation of the geometric and kinematic consistency conditions for discontinuities of the derivatives of functions that are discontinuous on a moving surface. The algorithm is illustrated by computing a simple example of the out-of-plane motion of an incompressible elastic medium.
@article{ZVMMF_2009_49_4_a13,
     author = {E. A. Gerasimenko and A. V. Zavertan},
     title = {Ray expansions of solutions around fronts as a~shock-fitting tool for shock loading simulation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {722--733},
     year = {2009},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a13/}
}
TY  - JOUR
AU  - E. A. Gerasimenko
AU  - A. V. Zavertan
TI  - Ray expansions of solutions around fronts as a shock-fitting tool for shock loading simulation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 722
EP  - 733
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a13/
LA  - ru
ID  - ZVMMF_2009_49_4_a13
ER  - 
%0 Journal Article
%A E. A. Gerasimenko
%A A. V. Zavertan
%T Ray expansions of solutions around fronts as a shock-fitting tool for shock loading simulation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 722-733
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a13/
%G ru
%F ZVMMF_2009_49_4_a13
E. A. Gerasimenko; A. V. Zavertan. Ray expansions of solutions around fronts as a shock-fitting tool for shock loading simulation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 722-733. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a13/

[1] Kulikovskii L. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[2] Lyubimov A. I., Rusanov V. V., Techenie gaza okolo tupykh tel, T. 1, 2, Nauka, M., 1970

[3] Godunov S. K., Zabrodin A. B., Ivanov M. Ya., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[4] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984 | MR

[5] Kulikovskii A. G., Chugaikova A. P., Klassicheskie i neklassicheskie razryvy i ikh struktury v nelineino-uprugikh sredakh s dispersiei i dissipatsiei, MIRAN, M., 2007

[6] Uilkins M. A., “Raschet uprugoplasticheskikh techenii”, Vychisl. metody v gidrodinamike, Mir, M., 1967, 212–263

[7] Kukudzhanov V. P., Kondaurov V. I., “Chislennoe reshenie neodnomernykh zadach dinamiki tverdogo deformiruemogo tela”, Probl. dinamiki uprugo-plasticheskikh sred, Ser.: Mekhan. Novoe v zarubezhnoi literature, 5, Mir, M., 1975, 39–84

[8] Kuropatenko V. F., “Metody rascheta udarnykh voln”, Dalnevostochnyi matem. zhurnal, 2:2 (2001), 45–59

[9] Zinovev P. V., Ragozina V. E., Burenin A. A., “Vydelenie poverkhnostei razryvov luchevym metodom v zadachakh dinamiki uprugikh sred”, Fundamentalnye i prikl. voprosy mekhan., KhGTU, Khabarovsk, 2003, 64–66

[10] Burenin A. A., Zinovev P. V., “K probleme vydeleniya poverkhnostei razryvov v chislennykh metodakh dinamiki deformiruemykh sred”, Probl. mekhan. Sb. statei. K 90-letiyu so dnya rozhdeniya A. Yu. Ishlinskogo, Fizmatlit, M., 2003, 146–155

[11] Rossikhin Yu. A., Shitikova M. V., “Ray method for solving dynamic problems connected with propagation of wave surfaces of strong and weak discontinuities”, Appl. Mech. Rev., 48:1 (1995), 1–39 | DOI

[12] Burenin A. A., Rossikhin Yu. A., “Luchevoi metod resheniya odnomernykh zadach nelineinoi dinamicheskoi teorii uprugosti s ploskimi poverkhnostyami razryvov”, Prikl. zadachi mekhan. deformiruemykh sred, DVO AN SSSR, Vladivostok, 1991, 129–137

[13] Burenin A. A., “Ob odnoi vozmozhnosti postroeniya priblizhennykh reshenii nestatsionarnykh zadach dinamiki uprugikh sred pri udarnykh vozdeistviyakh”, Dalnevostochnyi matem. sb., 8 (1999), 49–72

[14] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998

[15] Gerasimenko E. A., Ragozina V. E., “Geometricheskie i kinematicheskie ogranicheniya na razryvy funktsii na dvizhuschikhsya poverkhnostyakh”, Dalnevostochnyi matem. zhurnal, 5:1 (2004), 100–109

[16] Tomas T., Plasticheskoe techenie i razrushenie v tverdykh telakh, Mir, M., 1964

[17] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[18] Burenin A. A., Ragozina V. E., “K postroeniyu priblizhennykh reshenii kraevykh zadach udarnogo deformirovaniya”, Izv. RAN. Mekhan. tverdogo tela, 2008, no. 2 | MR

[19] Burenin A. A., Rossikhin Yu. A., “K resheniyu odnomernoi zadachi nelineinoi dinamicheskoi teorii uprugosti so strukturnoi udarnoi volnoi”, Prikl. mekhan., 26:1 (1990), 103–108 | MR | Zbl