New fourth-order splitting methods for two-dimensional evolution equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 696-699
Cet article a éte moissonné depuis la source Math-Net.Ru
New second- and third-order splitting methods are proposed for partial differential equations of the evolution type in a two-dimensional space. The methods are derived as based on diagonal implicit techniques used in the numerical solution to stiff ordinary differential equations. The methods are absolutely and unconditionally stable. Test computations are presented.
@article{ZVMMF_2009_49_4_a10,
author = {N. V. Shirobokov},
title = {New fourth-order splitting methods for two-dimensional evolution equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {696--699},
year = {2009},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a10/}
}
TY - JOUR AU - N. V. Shirobokov TI - New fourth-order splitting methods for two-dimensional evolution equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 696 EP - 699 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a10/ LA - ru ID - ZVMMF_2009_49_4_a10 ER -
N. V. Shirobokov. New fourth-order splitting methods for two-dimensional evolution equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 696-699. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a10/
[1] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR
[2] Shirobokov N. V., “Diagonalno-neyavnye skhemy Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 42:7 (2002), 1013–1018 | MR | Zbl
[3] Shirobokov N. V., “Novye metody rasschepleniya dlya dvumernykh evolyutsionnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 47:7 (2007), 1187–1191 | MR
[4] Marchuk G. I., Osnovy vychislitelnoi matematiki, Nauka, M., 1980 | MR