Acceleration of the convergence of the Laguerre series in the problem of inverting the Laplace transform
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 601-610 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When the Laplace transform is inverted numerically, the original function is sought in the form of a series in the Laguerre polynomials. To accelerate the convergence of this series, the Euler–Knopp method is used. The techniques for selecting the optimal value of the parameter of the transform on the real axis and in the complex plane are proposed.
@article{ZVMMF_2009_49_4_a1,
     author = {M. M. Kabardov and V. M. Ryabov},
     title = {Acceleration of the convergence of the {Laguerre} series in the problem of inverting the {Laplace} transform},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {601--610},
     year = {2009},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a1/}
}
TY  - JOUR
AU  - M. M. Kabardov
AU  - V. M. Ryabov
TI  - Acceleration of the convergence of the Laguerre series in the problem of inverting the Laplace transform
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 601
EP  - 610
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a1/
LA  - ru
ID  - ZVMMF_2009_49_4_a1
ER  - 
%0 Journal Article
%A M. M. Kabardov
%A V. M. Ryabov
%T Acceleration of the convergence of the Laguerre series in the problem of inverting the Laplace transform
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 601-610
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a1/
%G ru
%F ZVMMF_2009_49_4_a1
M. M. Kabardov; V. M. Ryabov. Acceleration of the convergence of the Laguerre series in the problem of inverting the Laplace transform. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 4, pp. 601-610. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_4_a1/

[1] Krylov V. I., Skoblya N. S., Metody priblizhennogo preobrazovaniya Fure i obrascheniya preobrazovaniya Laplasa, Nauka, M., 1974

[2] Picone M., “Sulla transformazione di Laplace”, Rend. Atti. Accad. Naz. Lincei, 21 (1935), 306–313

[3] Tricomi F., “Transformazione di Laplace e polinomi di Laguerre”, Rend. Atti. Accad. Naz. Lincei, 13 (1935), 232–239

[4] Shohat J., “Laguerre polynomials and the Laplace transform”, Duke Math. J., 6 (1940), 615–626 | DOI | MR

[5] Piessens R., Branders M. A., “Numerical inversion of the Laplace transform using generalized Laguerre polynomials”, Proc. IEE, 118 (1971), 1517–1522 | MR

[6] Davis B., Martin B., “Numerical inversion of the Laplace transform: a survey and comparison of methods”, J. Comput. Phys., 33 (1979), 1–32 | DOI | MR

[7] Lebedeva A. B., Ryabov V. M., “Ob obraschenii preobrazovaniya Laplasa s pomoschyu ryadov Lagerra i kvadraturnykh formul”, Metody vychislenii, 19, Izd-vo S.-Peterburgskogo un-ta, SPb., 2001, 123–139

[8] Gabutti B., Lepora P., “The numerical performance of Tricomi's formula for inverting the Laplace transform”, Numer. Math., 51 (1987), 369–380 | DOI | MR | Zbl

[9] Gabutti B., Lyness J. N., “Some generalizations of the Euler–Knopp transformation”, Numer. Math., 48 (1986), 199–220 | DOI | MR | Zbl

[10] Sege G., Ortogonalnye mnogochleny, Fizmatlit, M., 1962

[11] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[12] Kabardov M. M., “O primenenii metoda summirovaniya Eilera–Knoppa k ryadu Lagerra”, Metody vychislenii, 22, Izd-vo S.-Peterburgskogo un-ta, SPb., 2008, 77–81

[13] Amerbaev V. M., Utembaev H. A., Chislennyi analiz lagerrovskogo spektra, Nauka, Alma-Ata, 1982 | Zbl

[14] Skorokhodov S. L., “Metody analiticheskogo prodolzheniya obobschennykh gipergeometricheskikh funktsii ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};z)$”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1164–1186 | MR | Zbl