Spectral stability criterion and the Cauchy problem for the Hill equation at parametric resonance
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 498-511 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analytical solution to the Cauchy problem for the Hill equation is constructed by the second-order averaging method for three instability domains, stability domains near the boundaries with the instability domains, and on the boundaries themselves. An unstable exponentially decaying solution is found in the instability domains. A simple (convenient for applications) stability criterion for the trivial solution is formulated in the form of an inequality expressed in terms of the constant component, the amplitudes, and the frequencies of harmonics in the spectrum of the periodic coefficient of the Hill equation.
@article{ZVMMF_2009_49_3_a9,
     author = {A. F. Kurin},
     title = {Spectral stability criterion and the {Cauchy} problem for the {Hill} equation at parametric resonance},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {498--511},
     year = {2009},
     volume = {49},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a9/}
}
TY  - JOUR
AU  - A. F. Kurin
TI  - Spectral stability criterion and the Cauchy problem for the Hill equation at parametric resonance
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 498
EP  - 511
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a9/
LA  - ru
ID  - ZVMMF_2009_49_3_a9
ER  - 
%0 Journal Article
%A A. F. Kurin
%T Spectral stability criterion and the Cauchy problem for the Hill equation at parametric resonance
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 498-511
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a9/
%G ru
%F ZVMMF_2009_49_3_a9
A. F. Kurin. Spectral stability criterion and the Cauchy problem for the Hill equation at parametric resonance. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 498-511. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a9/

[1] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, Izd-vo inostr. lit., M., 1953

[2] Zhuravlev V. F., Klimov D. M., Prikladnye metody v teorii kolebanii, Nauka, M., 1988 | MR

[3] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[4] Grebenikov E. A., Ryabov Yu. A., Konstruktivnye metody analiza nelineinykh sistem, Nauka, M., 1979 | MR | Zbl

[5] Grebenikov E. A., Mitropolskii Yu. A., Ryabov Yu. A., Vvedenie v rezonansnuyu analiticheskuyu dinamiku, Yanus-K, M., 1999 | MR

[6] Bogolyubov H. H., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[7] Moiseev H. H., Asimptoticheskie metody nelineinoi mekhaniki, Nauka, M., 1981 | MR

[8] Kurin A. F., “Reshenie uravneniya Khilla metodom usredneniya pri parametricheskom rezonanse”, Tr. VII Vseros. konf. “Nelineinye kolebaniya mekhanich. sistem”, Nizhnii Novgorod, 2005

[9] Kurin A. F., “Ustoichivye kolebaniya i effektivnoe uskorenie zaryazhennykh chastits v puchnosti elektricheskogo polya stoyachei elektromagnitnoi volny”, Pisma v ZhTF, 31:13 (2005), 1–9