Equilibrium model of a credit market: Statement of the problem and solution methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 465-481 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An equilibrium model of a credit market is proposed and examined. The credit price or the interest rate in the model is determined by the consistent interaction of two macroscopic factors: supply and demand. Methods for computing an equilibrium interest rate are suggested. The methods are interpreted as market-balancing dynamics. The convergence of the methods is proved.
@article{ZVMMF_2009_49_3_a6,
     author = {A. S. Antipin and O. A. Popova},
     title = {Equilibrium model of a~credit market: {Statement} of the problem and solution methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {465--481},
     year = {2009},
     volume = {49},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a6/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - O. A. Popova
TI  - Equilibrium model of a credit market: Statement of the problem and solution methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 465
EP  - 481
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a6/
LA  - ru
ID  - ZVMMF_2009_49_3_a6
ER  - 
%0 Journal Article
%A A. S. Antipin
%A O. A. Popova
%T Equilibrium model of a credit market: Statement of the problem and solution methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 465-481
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a6/
%G ru
%F ZVMMF_2009_49_3_a6
A. S. Antipin; O. A. Popova. Equilibrium model of a credit market: Statement of the problem and solution methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 465-481. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a6/

[1] Antipin A. C., “Metody resheniya sistem zadach vypuklogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 27:3 (1987), 368–376 | MR

[2] Antipin A. C., “O modelyakh vzaimodeistviya predpriyatii-proizvoditelei, predpriyatii-potrebitelei i transportnoi sistemy”, Avtomatika i telemekhan., 1989, no. 10, 105–113 | Zbl

[3] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[4] Antipin A. C., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 1969–1990 | MR | Zbl

[5] Antipin A. C. Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach so svyazannymi peremennymi, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2102–2111 | MR | Zbl

[6] Antipin A. C., “Sedlovye gradientnye protsessy, upravlyaemye s pomoschyu obratnykh svyazei”, Avtomatika i telemekhan., 1994, no. 3, 12–23 | MR | Zbl

[7] Antipin A. C., “O skhodimosti i otsenkakh skorosti skhodimosti proksimalnykh metodov k nepodvizhnym tochkam ekstremalnykh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–704 | MR | Zbl