Uniqueness of the solution to an inverse thermoelasticity problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 542-548

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of coupled thermoelasticity is considered in the static, quasi-static, and dynamic cases. The goal is to recover the thermal stress state inside a body from the displacements and temperature given on a portion of its boundary. The inverse thermoelasticity problem finds applications in structural stability analysis in operational modes, when measurements can generally be conducted only on a surface portion. For a simply connected body consisting of a mechanically and thermally isotropic linear elastic material, uniqueness theorems are proved in all the cases under study.
@article{ZVMMF_2009_49_3_a12,
     author = {V. A. Kozlov and V. G. Maz'ya and A. V. Fomin},
     title = {Uniqueness of the solution to an inverse thermoelasticity problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {542--548},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a12/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - V. G. Maz'ya
AU  - A. V. Fomin
TI  - Uniqueness of the solution to an inverse thermoelasticity problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 542
EP  - 548
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a12/
LA  - ru
ID  - ZVMMF_2009_49_3_a12
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A V. G. Maz'ya
%A A. V. Fomin
%T Uniqueness of the solution to an inverse thermoelasticity problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 542-548
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a12/
%G ru
%F ZVMMF_2009_49_3_a12
V. A. Kozlov; V. G. Maz'ya; A. V. Fomin. Uniqueness of the solution to an inverse thermoelasticity problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 542-548. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a12/