Uniqueness of the solution to an inverse thermoelasticity problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 542-548
Cet article a éte moissonné depuis la source Math-Net.Ru
The inverse problem of coupled thermoelasticity is considered in the static, quasi-static, and dynamic cases. The goal is to recover the thermal stress state inside a body from the displacements and temperature given on a portion of its boundary. The inverse thermoelasticity problem finds applications in structural stability analysis in operational modes, when measurements can generally be conducted only on a surface portion. For a simply connected body consisting of a mechanically and thermally isotropic linear elastic material, uniqueness theorems are proved in all the cases under study.
@article{ZVMMF_2009_49_3_a12,
author = {V. A. Kozlov and V. G. Maz'ya and A. V. Fomin},
title = {Uniqueness of the solution to an inverse thermoelasticity problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {542--548},
year = {2009},
volume = {49},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a12/}
}
TY - JOUR AU - V. A. Kozlov AU - V. G. Maz'ya AU - A. V. Fomin TI - Uniqueness of the solution to an inverse thermoelasticity problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 542 EP - 548 VL - 49 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a12/ LA - ru ID - ZVMMF_2009_49_3_a12 ER -
%0 Journal Article %A V. A. Kozlov %A V. G. Maz'ya %A A. V. Fomin %T Uniqueness of the solution to an inverse thermoelasticity problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 542-548 %V 49 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a12/ %G ru %F ZVMMF_2009_49_3_a12
V. A. Kozlov; V. G. Maz'ya; A. V. Fomin. Uniqueness of the solution to an inverse thermoelasticity problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 542-548. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a12/
[1] Tikhonov A. N., Arsenii V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR
[2] Norden A. P., Teoriya poverkhnostei, M., 1956
[3] Mazya V. G., Plamenevskii B. A., “O psevdoanalitichnosti reshenii vozmuschennogo poligarmonicheskogo uravneniya v $R^n$. Teoriya rasseyaniya. Teoriya kolebanii”, Probl. matem. fiz., 9, L., 1979, 75–91 | MR
[4] Khardi G. G., Polia G., Littlvud Dzh. E., Neravenstva, M., 1948
[5] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR