Numerical algorithm for solving diffusion equations on the basis of multigrid methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 518-541 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new effective algorithm based on multigrid methods is proposed for solving parabolic equations. The algorithm preserves implicit-scheme advantages (such as stability, accuracy, and conservativeness) while it involves a considerably reduced amount of arithmetic operations at every time level. The absolute stability, conservativeness, and convergence of the algorithm is proved theoretically using one- and two-dimensional initial-boundary value model problems for the heat equation. The error of the solution is estimated. The good accuracy of the method is demonstrated using two-dimensional model problems, including ones with discontinuous coefficients.
@article{ZVMMF_2009_49_3_a11,
     author = {M. E. Ladonkina and O. Yu. Milyukova and V. F. Tishkin},
     title = {Numerical algorithm for solving diffusion equations on the basis of multigrid methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {518--541},
     year = {2009},
     volume = {49},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a11/}
}
TY  - JOUR
AU  - M. E. Ladonkina
AU  - O. Yu. Milyukova
AU  - V. F. Tishkin
TI  - Numerical algorithm for solving diffusion equations on the basis of multigrid methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 518
EP  - 541
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a11/
LA  - ru
ID  - ZVMMF_2009_49_3_a11
ER  - 
%0 Journal Article
%A M. E. Ladonkina
%A O. Yu. Milyukova
%A V. F. Tishkin
%T Numerical algorithm for solving diffusion equations on the basis of multigrid methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 518-541
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a11/
%G ru
%F ZVMMF_2009_49_3_a11
M. E. Ladonkina; O. Yu. Milyukova; V. F. Tishkin. Numerical algorithm for solving diffusion equations on the basis of multigrid methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 518-541. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a11/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[2] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, http://www.phys.spb.ru/Stud/Books/index.php

[3] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl

[4] Ladonkina M. E., Milyukova O. Yu., Tishkin V. F., “Odin chislennyi algoritm dlya uravnenii diffuzionnogo tipa na osnove mnogosetochnykh metodov”, Matem. modelirovanie, 19:4 (2007), 71–89 | MR | Zbl

[5] Ladonkina M. E., Milyukova O. Yu., Tishkin V. F., “Ispolzovanie mnogosetochnykh metodov dlya resheniya uravnenii diffuzionnogo tipa”, VANT. Matem. modelirovanie fiz. protsentov, 1 (2008), 4–19 | MR

[6] Godunov S. K., Ryabenkii B. C., Raznostnye skhemy, Nauka, M., 1977

[7] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972

[8] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[9] Gustafsson I., “A class of first order factorization methods”, BIT, 18 (1978), 142–156 | DOI | MR | Zbl