A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 512-517
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A novel two-stage difference method is proposed for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. At the first stage, approximate values of the sum of the pure fourth derivatives of the desired solution are sought on a cubic grid. At the second stage, the system of difference equations approximating the Dirichlet problem is corrected by introducing the quantities determined at the first stage. The difference equations at the first and second stages are formulated using the simplest six-point averaging operator. Under the assumptions that the given boundary values are six times differentiable at the faces of the parallelepiped, those derivatives satisfy the Hölder condition, and the boundary values are continuous at the edges and their second derivatives satisfy a matching condition implied by the Laplace equation, it is proved that the difference solution to the Dirichlet problem converges uniformly as $O(h^4\ln h^{-1})$, where $h$ is the mesh size.
            
            
            
          
        
      @article{ZVMMF_2009_49_3_a10,
     author = {E. A. Volkov},
     title = {A~two-stage difference method for solving the {Dirichlet} problem for the {Laplace} equation on a~rectangular parallelepiped},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {512--517},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a10/}
}
                      
                      
                    TY - JOUR AU - E. A. Volkov TI - A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 512 EP - 517 VL - 49 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a10/ LA - ru ID - ZVMMF_2009_49_3_a10 ER -
%0 Journal Article %A E. A. Volkov %T A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 512-517 %V 49 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a10/ %G ru %F ZVMMF_2009_49_3_a10
E. A. Volkov. A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 512-517. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a10/
