@article{ZVMMF_2009_49_3_a10,
author = {E. A. Volkov},
title = {A~two-stage difference method for solving the {Dirichlet} problem for the {Laplace} equation on a~rectangular parallelepiped},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {512--517},
year = {2009},
volume = {49},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a10/}
}
TY - JOUR AU - E. A. Volkov TI - A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 512 EP - 517 VL - 49 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a10/ LA - ru ID - ZVMMF_2009_49_3_a10 ER -
%0 Journal Article %A E. A. Volkov %T A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 512-517 %V 49 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a10/ %G ru %F ZVMMF_2009_49_3_a10
E. A. Volkov. A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 512-517. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a10/
[1] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, Uspekhi matem. nauk, 1941, no. 8, 171–231
[2] Kellog O. D., “On the derivatives of harmonic functions on the boundary”, Trans. Amer. Math. Soc., 33:2 (1931), 486–510 | DOI | MR
[3] Volkov E. A., “O kombinirovannom setochnom metode resheniya zadachi Dirikhle dlya uravneniya Laplasa na pryamougolnom parallelepipede”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 665–670 | MR | Zbl
[4] Volkov E. A., “O differentsialnykh svoistvakh reshenii uravnenii Laplasa i Puassona na parallelepipede i effektivnykh otsenkakh pogreshnosti metoda setok”, Tr. MIAN SSSR, 105, M., 1969, 46–65 | Zbl
[5] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 1, Fizmatlit, M., 2007
[6] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[7] Volkov E. A., “Effektivnyi metod kubicheskikh setok resheniya uravneniya Laplasa na parallelepipede pri razryvnykh granichnykh usloviyakh”, Tr. MIAN SSSR, 156, M., 1980, 30–46 | Zbl
[8] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl
[9] Volkov E. A., “On the solution of the Dirichlet problem for the Laplace equation on a rectangular parallepepiped by the grid method”, Russ. J. Numer. Analys. Math. Modelling, 16:6 (2001), 519–527 | MR | Zbl
[10] Bakhvalov H. S., Zhidkov H. P., Kobelkov G. M., Chislennye metody, BINOM. Laboratoriya znanii, M., 2004