Preconditioning of saddle point problems by the method of Hermitian and skew-Hermitian splitting iterations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 411-421 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a nonsingular symmetric system of linear equations with a saddle point, a Hermitian and skew-Hermitian splitting (HSS) preconditioner is considered. For the preconditioned system, symmetrizability conditions are established under which estimates are derived for the spectrum and the convergence rate of Chebyshev-type algorithms and GMRes.
@article{ZVMMF_2009_49_3_a1,
     author = {Yu. V. Bychenkov},
     title = {Preconditioning of saddle point problems by the method of {Hermitian} and {skew-Hermitian} splitting iterations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {411--421},
     year = {2009},
     volume = {49},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a1/}
}
TY  - JOUR
AU  - Yu. V. Bychenkov
TI  - Preconditioning of saddle point problems by the method of Hermitian and skew-Hermitian splitting iterations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 411
EP  - 421
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a1/
LA  - ru
ID  - ZVMMF_2009_49_3_a1
ER  - 
%0 Journal Article
%A Yu. V. Bychenkov
%T Preconditioning of saddle point problems by the method of Hermitian and skew-Hermitian splitting iterations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 411-421
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a1/
%G ru
%F ZVMMF_2009_49_3_a1
Yu. V. Bychenkov. Preconditioning of saddle point problems by the method of Hermitian and skew-Hermitian splitting iterations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 3, pp. 411-421. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_3_a1/

[1] Benzi M., Golub G. H., Liesen J., “Numerical solution of saddle point problems”, Acta Numerica, 14 (2005), 1–137 | DOI | MR | Zbl

[2] Benzi M., Golub G. H., “A preconditioner for generalized saddle point problems”, SIAM J. Matrix Analys and Appl., 26:1 (2004), 20–41 | DOI | MR | Zbl

[3] Benzi M., Simoncini V., On the eigenvalues of a class of saddle point matrices, Tech. Rept. TR-2005-007-A, Dept. Math. and Comput. Sci. Emory Univ. GA, Atlanta, 2005, 1–21 | MR

[4] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[5] Bychenkov Yu. V., “Optimizatsiya obobschennogo metoda peremennykh simmetrichnykh i kososimmetrichnykh iteratsii dlya resheniya simmetrichnykh sedlovykh zadach”, Zh. vychisl. matem. i matem. fiz., 46:6 (2006), 983–995 | MR

[6] Bychenkov Yu. V., “O spektralnykh svoistvakh odnogo puchka operatorov”, Zh. vychisl. matem. i matem. fiz., 47:2 (2007), 197–205 | MR | Zbl

[7] Saad Y., Iterative methods for sparse linear systems, PWS, Boston, 1996 | Zbl