Numerical analysis of 3D dynamic problems of the Cosserat elasticity theory subject to boundary symmetry conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 313-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the Cosserat continuum model, one-dimensional solutions describing plane longitudinal waves, transverse (shear) waves with particle rotation, and torsional waves are analyzed. Boundary symmetry conditions for various types of loading are found. A parallel computational algorithm is worked out for solving 3D dynamic problems of the Cosserat elasticity theory on multiprocessor computer systems. Computations of the propagation of the stress and strain waves induced by a point impulse force in an elastic medium are performed.
@article{ZVMMF_2009_49_2_a9,
     author = {O. V. Sadovskaya},
     title = {Numerical analysis of {3D~dynamic} problems of the {Cosserat} elasticity theory subject to boundary symmetry conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {313--322},
     year = {2009},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a9/}
}
TY  - JOUR
AU  - O. V. Sadovskaya
TI  - Numerical analysis of 3D dynamic problems of the Cosserat elasticity theory subject to boundary symmetry conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 313
EP  - 322
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a9/
LA  - ru
ID  - ZVMMF_2009_49_2_a9
ER  - 
%0 Journal Article
%A O. V. Sadovskaya
%T Numerical analysis of 3D dynamic problems of the Cosserat elasticity theory subject to boundary symmetry conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 313-322
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a9/
%G ru
%F ZVMMF_2009_49_2_a9
O. V. Sadovskaya. Numerical analysis of 3D dynamic problems of the Cosserat elasticity theory subject to boundary symmetry conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 313-322. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a9/

[1] Palmov V. A., “Osnovnye uravneniya teorii nesimmetrichnoi uprugosti”, Prikl. matem. i mekhan., 28:3 (1964), 401–408 | MR

[2] Koiter V. T., “Momentnye napryazheniya v teorii uprugosti”, Mekhanika. Sb. perevodov, 3, 1965, 89–112

[3] Sadovskaya O. V., Sadovskii V. M., Matematicheskoe modelirovanie v zadachakh mekhaniki sypuchikh sred, Fizmatlit, M., 2008 | Zbl

[4] Erofeev V. I., Volnovye protsessy v tverdykh telakh s mikrostrukturoi, Izd-vo MGU, M., 1999

[5] Sadovskaya O. V., Sadovsky V. M., “Numerical analysis of elastic waves propagation in Cosserat continuum”, Proc. VIII Internat. Conf. Math, and Numer. Aspects of Wave Propagation “Waves 2007”, Univ. Reading: INRIA, England, 2007, 327–329

[6] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[7] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, Mir, M., 1982 | MR

[8] Sadovskii V. M., Razryvnye resheniya v zadachakh dinamiki uprugoplasticheskikh sred, Fizmatlit, M., 1997 | MR

[9] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[10] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[11] Sadovskaya O. V., Sadovskii V. M., “Parallelnaya realizatsiya algoritma dlya rascheta uprugoplasticheskikh voln v sypuchei srede”, Vychisl. metody i programmirovanie, 6:2 (2005), 86–93 | MR

[12] Sadovskaya O. V., Sadovskii V. M., “Parallelnye vychisleniya v prostranstvennykh zadachakh dinamiki sypuchei sredy”, Vestn. Krasnoyarskogo gos. un-ta, 2006, no. 1, 215–221