A new technique for avoiding the Maratos effect
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 241-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A well-known difficulty arising in the convergence globalization of Newton-type constrained optimization methods is the Maratos effect, which prevents these methods from achieving a superlinear convergence rate and, in many cases, reduces their general efficiency. For the sequential quadratic programming method with linesearch, a new simple and rather promising technique is proposed to avoid the Maratos effect.
@article{ZVMMF_2009_49_2_a3,
     author = {A. F. Izmailov},
     title = {A~new technique for avoiding the {Maratos} effect},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {241--254},
     year = {2009},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a3/}
}
TY  - JOUR
AU  - A. F. Izmailov
TI  - A new technique for avoiding the Maratos effect
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 241
EP  - 254
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a3/
LA  - ru
ID  - ZVMMF_2009_49_2_a3
ER  - 
%0 Journal Article
%A A. F. Izmailov
%T A new technique for avoiding the Maratos effect
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 241-254
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a3/
%G ru
%F ZVMMF_2009_49_2_a3
A. F. Izmailov. A new technique for avoiding the Maratos effect. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 241-254. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a3/

[1] Izmailov A. F., Solodov M. V., Chislennye metody optimizatsii, Fizmatlit, M., 2003 | MR

[2] Bonnans J. F., “Local analysis of Newton-type methods for variational inequalities and nonlinear programming”, Appl. Math. Optimizat., 29 (1994), 161–186 | DOI | MR | Zbl

[3] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006

[4] Maratos N., Exact penalty function algorithms for finite dimensional and control optimization problems, Ph.D. Thesis, London, 1978

[5] Nocedal J., Wright S. J., Numerical optimization, Springer, New York, 1999 | MR | Zbl

[6] Bonnans J. F., Gilbert J. C., Lemaréchal S., Sagastizábal C. A., Numerical optimization, Springer, Berlin–Heidelberg, 2003 | MR | Zbl

[7] Bonnans J. F., “Asymptotic admissiability of the unit stepsize in exact penalty methods”, SIAM J. Control. Optimizat., 27:3 (1989), 631–641 | DOI | MR | Zbl

[8] Chamberlain R. M., Powell M. J. D., Lemaréchal S., Pedersen H. C., “The watchdog technique for forcing convergence in algorithms for constrained optimization”, Math. Program. Study, 16 (1982), 1–17 | MR | Zbl

[9] Panier E. R., Tits A. L., “Avoiding the Maratos effect by means of a nonmonotone line search. I. General constrained problem”, SIAM J. Numer. Analys., 28:4 (1991), 1183–1195 | DOI | MR | Zbl

[10] Darina A. H., Izmailov A. F., Solodov M. V., “Smeshannye komplementarnye zadachi: regulyarnost, otsenki rasstoyaniya do resheniya i nyutonovskie metody”, Zh. vychisl. matem. i matem. fiz., 44:1 (2004), 51–69 | MR

[11] Izmailov A. F., Solodov M. V., “On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions”, Math. Program., 117:1–2 (2009), 271–304 | DOI | MR | Zbl

[12] Nabor test-zadach optimizatsii. Ch. 2. Zadachi nelineinogo programmirovaniya, Estonskoe nauchno-proizvodstvennoe ob'edinenie vychisl. tekhniki i informatiki, Tallin, 1991

[13] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer, New York, 2000 | MR