@article{ZVMMF_2009_49_2_a14,
author = {A. A. Lazarev},
title = {Estimates of the absolute error and a~scheme for an approximate solution to scheduling problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {382--396},
year = {2009},
volume = {49},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a14/}
}
TY - JOUR AU - A. A. Lazarev TI - Estimates of the absolute error and a scheme for an approximate solution to scheduling problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 382 EP - 396 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a14/ LA - ru ID - ZVMMF_2009_49_2_a14 ER -
%0 Journal Article %A A. A. Lazarev %T Estimates of the absolute error and a scheme for an approximate solution to scheduling problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 382-396 %V 49 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a14/ %G ru %F ZVMMF_2009_49_2_a14
A. A. Lazarev. Estimates of the absolute error and a scheme for an approximate solution to scheduling problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 382-396. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a14/
[1] Graham R. L., Lawler E. L., Lenstra J. K. et al., “Optimization and approximation in deterministic sequencing and scheduling: a survey”, Ann. Discrete Math., 5 (1979), 287–326 | DOI | MR | Zbl
[2] Lenstra J. K., Rinnooy Kan A. H. G., Brucker P., “Complexity of machine scheduling problems”, European J. Operat. Res., 4 (1980), 270–275 | DOI | MR | Zbl
[3] Jackson J. R., Scheduling a production line to minimize maximum tardiness, Manag. Sci. Res. Project, UCLA, 1955, 43
[4] Potts C. N., “Analysis of a heuristic for one machine sequencing with release dates and delivery times”, Operat. Res., 28 (1980), 1436–1441 | DOI | MR | Zbl
[5] Hall L. A., Shmoys D. B., “Jackson's rule for one-machine scheduling: making a good heuristic better”, Math. Operat. Res., 17 (1992), 22–35 | DOI | MR | Zbl
[6] Mastrolilli M., “Efficient approximation schemes for scheduling problems with release dates and deilivery times”, J. Schedling, 6 (2003), 521–531 | DOI | MR | Zbl
[7] Lawler E. L., “Optimal sequencing of a single machine subject to precedence constraints”, Manag. Sci., 19:5 (1973), 544–546 | DOI | Zbl
[8] Simons B. B., “A fast algorithm for single processor scheduling”, Proc. 19th IEEE Ann. Symp. on Foundations of Computer Science, Ann. Arbor. Mich., New York, 1978, 246–252 | MR
[9] Baker K. R., Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., “Preemptive scheduling of a single machine to minimize maximum cost subject to release dates and precedence constraints”, Operat. Res., 31 (1983), 381–386 | DOI
[10] Hoogeveen J. A., “Minimizing maximum promptness and maximum lateness on a single machine”, Math. Operat. Res., 21 (1996), 100–114 | DOI | MR | Zbl
[11] Lazarev A. A., Shulgina O. H., “Psevdopolinomialnyi algoritm resheniya NP-trudnoi zadachi minimizatsii maksimalnogo vremennogo smescheniya”, Tr. X mezhdunar. Baikalskoi shkoly-seminara “Metody optimizatsii i ikh prilozh.” (5–12 iyulya), Baikal, Irkutsk, 1998, 163–167
[12] Lazarev A. A., Shulgina O. N., Polinomialno razreshimye chastnye sluchai zadachi minimizatsii maksimalnogo vremennogo smescheniya, Dep. v VINITI 28.11.00, No 3019-V00, Kazanskii un-t, Kazan, 2000, Izv. vuzov. Matematika
[13] Finkelshtein Yu. Yu., Priblizhennye metody i prikladnye zadachi diskretnogo programmirovaniya, Nauka, M., 1976
[14] Brucker P., Garey M. R., Johnson D. S., “Scheduling equal-length tasks under treelike precedence constraints to minimize maximum lateness”, Math. Operat. Res., 2:3 (1977), 275–284 | DOI | MR | Zbl
[15] Du J., Leung J. Y.-T., Young G. H., “Scheduling chain-structered tasks to minimize makespan and mean flow time”, Inform. and Comput., 92:2 (1991), 219–236 | DOI | MR | Zbl
[16] Garey M. R., Johnson D. S., ““Strong” NP-completeness results: motivation, examples, and implications”, J. Assoc. Comput. Machinery, 25:3 (1978), 499–508 | MR | Zbl
[17] Ullman J. D., “NP-complete scheduling problems”, J. Comput. System Sci., 10 (1975), 384–393 | MR | Zbl
[18] Lazarev A. A., Sadykov P. P., Sevastyanov C. B., “Skhema priblizhennogo resheniya problemy $1|R_j|L_{\max}$”, Diskretnyi analiz i issledovanie operatsii. Ser. 2, 13:1 (2006), 57–76 | MR
[19] Garey M. R., Johnson D. S., “Schduling tasks with nonuniform deadlines on two processors”, J. Assoc. Comput. Machinery, 23 (1976), 461–467 | MR | Zbl
[20] Garey M. R., Johnson D. S., “Two-rpocessor scheduling with start-times and deadlines”, SIAM J. Comput., 6:3 (1977), 416–426 | DOI | MR | Zbl
[21] Brucker P., Hurink J., Kubiak W., “Scheduling identical jobs with chain precedence constraints on two uniform machines”, Math. Meth. Operat. Res., 49:2 (1999), 211–219 | MR | Zbl
[22] Kubiak W., Exact and approximate algorithms for scheduling unit time tasks with trre-like precedence constraints, Abstr. EURO IX-TIMS XXVIII, Paris, 1988, 195
[23] Simons B., “Multiprocessor scheduling of unit-time jobs with arbitrary release times and deadlines”, SIAM J. Comput., 2 (1983), 294–299 | DOI | MR
[24] Davida G. I., Linton D. J., “A new algorithm for the scheduling of tree strcutures tasks”, Proc. Conf. Inform. Sci. and Systems, Baltimore, MD, 1976, 543–548
[25] Hu T. C., “Parallel sequencing and assembly line problems”, Operat. Res., 9 (1961), 841–848 | DOI | MR
[26] Baptiste P., Brucker P., Knust S., Timkovsky V., “Ten notes on equal-execution-time scheduling”, Quarterly Journal of Operations. Research, 2 (2004), 111–127 | MR | Zbl
[27] Leung J. Y.-T., Dornberger O., Witthoff J. D., “On some variants of the bandwidth minimization problem”, SIAM J. Comput., 13:3 (1984), 650–667 | DOI | MR | Zbl
[28] Timkovsky V. G., “Identical parallel machines vs. unit-time shops and preemptions vs. chains inscheduling complexity”, European J. Operat. Res., 149:2 (2003), 355–376 | DOI | MR | Zbl
[29] Brucker P., Knust S., “Complexity results for single-machine problems with positive finish-start time-lags”, Computing., 63 (1999), 299–316 | DOI | MR | Zbl
[30] Johnson S. M., “Optimal two- and three-stage production schedules with setup times included”, Naval Res. Logistics Quarterly, 1 (1954), 61–68 | DOI
[31] Bruno J., Jones III J. W., So K., “Deterministic scheduling with pipelined processors”, IEEE Trans. Comput., 29:4 (1980), 308–316 | DOI | MR | Zbl
[32] Lazarev A. A., “Pareto-optimalnoe mnozhestvo NP-trudnoi zadachi minimizatsii maksimalnogo vremennogo smescheniya”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 6, 103–110 | MR
[33] Lazarev A. A., “Otsenka absolyutnoi pogreshnosti zadach teorii raspisanii s kriteriem minimizatsii maksimalnogo vremennogo smescheniya”, Dokl. RAN, 415:4 (2007), 446–449 | MR | Zbl
[34] Lazarev A.A., Effektivnye algoritmy resheniya nekotorykh zadach teorii raspisanii dlya odnogo pribora s direktivnymi srokami obsluzhivaniya trebovanii, Dis. $\dots$ kand. fiz.-matem. nauk, Un-t, Kazan, 1989, 108 pp.