Some properties of the equations governing a two-dimensional quasi-gasdynamic model of traffic flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 373-381 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A recently proposed two-dimensional quasi-gasdynamic model of traffic flows is considered. Its Petrovskii parabolicity is analyzed, and the stability of small perturbations against a constant background is investigated. In a nonlinear setting, an energy equality is derived and an energy estimate of the solution is obtained.
@article{ZVMMF_2009_49_2_a13,
     author = {A. A. Zlotnik},
     title = {Some properties of the equations governing a~two-dimensional quasi-gasdynamic model of traffic flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {373--381},
     year = {2009},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a13/}
}
TY  - JOUR
AU  - A. A. Zlotnik
TI  - Some properties of the equations governing a two-dimensional quasi-gasdynamic model of traffic flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 373
EP  - 381
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a13/
LA  - ru
ID  - ZVMMF_2009_49_2_a13
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%T Some properties of the equations governing a two-dimensional quasi-gasdynamic model of traffic flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 373-381
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a13/
%G ru
%F ZVMMF_2009_49_2_a13
A. A. Zlotnik. Some properties of the equations governing a two-dimensional quasi-gasdynamic model of traffic flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 373-381. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a13/

[1] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[2] Elizarova T. G., Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchn. mir, M., 2007

[3] Karamzin Yu. N., Trapeznikova M. A., Chetverushkin B. N., Churbanova N. G., “Dvumernaya model avtomobilnykh potokov”, Matem. modelirovanie, 18:6 (2006), 85–95 | MR | Zbl

[4] Sheretov Yu. V., “Analiz zadachi o rasprostranenii zvuka dlya linearizovannykh KGD-sistem”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Tverskoi GU, Tver, 2001, 178–191

[5] Dorodnitsyn L. V., “Ob ustoichivosti malykh kolebanii v kvazigazodinamicheskoi sisteme uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1299–1305 | MR | Zbl

[6] Zlotnik A. A., “Klassifikatsiya nekotorykh modifikatsii sistemy uravnenii Eilera”, Dokl. RAN, 407:6 (2006), 747–751 | MR

[7] Zlotnik A. A., Chetverushkin B. N., “O parabolichnosti kvazigazodinamicheskoi sistemy uravnenii, ee giperbolicheskoi 2-go poryadka modifikatsii i ustoichivosti malykh vozmuschenii dlya nikh”, Zh. vychisl. matem. i matem. fiz., 48:3 (2008), 445–472 | MR | Zbl

[8] Petrovskii I. G., Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya, Nauka, M., 1986 | MR

[9] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR

[10] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967