$\mathrm{KP}_1$ acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for the transport equation in three-dimensional geometry
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 344-372 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the transport equation in three-dimensional $(r,\vartheta,z)$ geometry, a $\mathrm{KP}_1$ acceleration scheme for inner iterations that is consistent with the weighted diamond differencing (WDD) scheme is constructed. The $P_1$ system for accelerating corrections is solved by an algorithm based on the cyclic splitting method (SM) combined with Gaussian elimination as applied to auxiliary systems of two-point equations. No constraints are imposed on the choice of the weights in the WDD scheme, and the algorithm can be used, for example, in combination with an adaptive WDD scheme. For problems with periodic boundary conditions, the two-point systems of equations are solved by the cyclic through-computations method elimination. The influence exerted by the cycle step choice and the convergence criterion for SM iterations on the efficiency of the algorithm is analyzed. The algorithm is modified to threedimensional $(x,y,z)$ geometry. Numerical examples are presented featuring the $\mathrm{KP}_1$ scheme as applied to typical radiation transport problems in three-dimensional geometry, including those with an important role of scattering anisotropy. A reduction in the efficiency of the consistent $\mathrm{KP}_1$ scheme in highly heterogeneous problems with dominant scattering in non-one-dimensional geometry is discussed. An approach is proposed for coping with this difficulty. It is based on improving the monotonicity of the difference scheme used to approximate the transport equation.
@article{ZVMMF_2009_49_2_a12,
     author = {A. M. Voloshchenko},
     title = {$\mathrm{KP}_1$ acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for the transport equation in three-dimensional geometry},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {344--372},
     year = {2009},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a12/}
}
TY  - JOUR
AU  - A. M. Voloshchenko
TI  - $\mathrm{KP}_1$ acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for the transport equation in three-dimensional geometry
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 344
EP  - 372
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a12/
LA  - ru
ID  - ZVMMF_2009_49_2_a12
ER  - 
%0 Journal Article
%A A. M. Voloshchenko
%T $\mathrm{KP}_1$ acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for the transport equation in three-dimensional geometry
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 344-372
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a12/
%G ru
%F ZVMMF_2009_49_2_a12
A. M. Voloshchenko. $\mathrm{KP}_1$ acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for the transport equation in three-dimensional geometry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 344-372. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a12/

[1] Voloschenko A. M., Gukov S. V., Kryuchkov V. P. et al., “The CNCSN: one, two- and three-dimensional coupled neutral and charged particle discrete ordinates code package”, Proc. Internat. Conf. Math. and Comput., Supercomput., Reactor Phys. and Nucl. and Biol. Applic. (Avignon, France, September 12–15, 2005), on CD-ROM

[2] Lebedev V. I., “O KP-metode uskoreniya skhodimosti iteratsii pri reshenii kineticheskogo uravneniya”, Chisl. metody resheniya zadach matem. fiz., Nauka, M., 1966, 154–176

[3] Lebedev V. I., “Ob iteratsionnom KP-metode”, Zh. vychisl. matem. i matem. fiz., 7:6 (1967), 1250–1269 | Zbl

[4] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[5] Gelbard E. M., Hageman L. A., “The synthetic method as applied to the $S_n$ equations”, Nucl. Sci. and Engng., 37 (1969), 288

[6] Alcouffe R. E., “Diffusion synthetic acceleration methods for the diamond-differenced discrete-ordinates equations”, Nucl. Sci. and Engng., 64:2 (1977), 344–355

[7] Adams M. L., Larsen E. W., “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nucl. Energy, 40:1 (2002), 3–159 | DOI

[8] Lorence L. J., Morel J. E., Larsen E. W., “An $S_2$ synthetic acceleration method for the one-dimensional $S_n$ equations with linear discontinuous spatial differencing”, Nucl. Sci. Engng., 101:2 (1989), 341–351

[9] Averin A. V., Voloschenko A. M., “Consistent $P_1$ synthetic acceleration method for outer iterations”, Transp. Theory and Statist. Phys., 23:5 (1994), 701–730 | DOI | MR | Zbl

[10] Voloschenko A. M., “Consistent $P_1$ synthetic acceleration scheme for transport equation in two-dimensional $r$, $z$ geometry”, Proc. Joint Internat. Conf. on Math. Meth. and Supercomput. Nucl. Applic., V. 1 (Saratoga Springs, USA. October 6–10), 1997, 364–373

[11] Voloschenko A. M., “Experience in the use of the consistent $P_1$ synthetic acceleration scheme for transport equation in 2D geometry”, Proc. Internat. Conf. on Math. and Comput, Reactor Phys., and Environmental Analys. in Nucl. Applic., V. 1 (Madrid, Spain, 27–30 September), 1999, 104–113

[12] Voloschenko A. M., “$KR_1$-skhema uskoreniya vnutrennikh iteratsii dlya uravneniya perenosa v dvumernoi geometrii, soglasovannaya so vzveshennoi almaznoi skhemoi”, Zh. vychisl. matem. i matem. fiz., 41:9 (2001), 1379–1398 | MR

[13] Voloschenko A. M., Voronkov A. B., Sychugova E. P., Soglasovannaya $R_1SA$ skhema uskoreniya vnutrennikh i vneshnikh iteratsii dlya uravneniya perenosa neitronov i fotonov v odnomernykh geometriyakh v pakete REAKTOR, Preprint No 2, IPMatem. RAN, M., 1996

[14] Voloschenko A. M., Consistent $P_1$ synthetic acceleration scheme for transport equation in 3D geometries, Proc. Internat. Conf. Math. and Comput., Supercomput., Reactor Phys. and Nuclear and Biol. Applic. Avignon, France, September 12–15, 2005; on CD-ROM

[15] Voloschenko A. M., Ob ispolzovanii periodicheskikh granichnykh uslovii v $KR_1$ metode uskoreniya vnutrennikh iteratsii, Tezisy dokl. IX Rossiiskoi nauch. konf. “Radiatsionnaya zaschita i radiatsionnaya bezopasnost v yadernykh tekhnologiyakh” Obninsk: 24–26 oktyabrya, 2006, 39–41

[16] Warsa J. S., Wareing T. A., Morel J. A., Krylov iterative methods applied to multidimensional $S_n$ calculations in the presence of material discontinuities, Proc. of M 2003 – Nuclear Math. and Comput. Sci.: A Century in Review – A Century Anew, paper no. 134, April 6–10. Gatlinburg, USA, 2003; on CD-ROM

[17] Voloschenko A. M., A remedy to prevent the PISA scheme degradation in multidimensional $S_n$ calculations in the presence of material discontinuities, Proc. Internat. Conf. Advances in Nucl. Analys. and Simulation – PHYSOR 2006. Vancouver, Canada, September 10–14, 2006; on CD-ROM

[18] Carlson B. G., “A method of characteristics and other improvements in solution methods for the transport equation”, Nucl. Sci. and Engng., 61 (1976), 408–425

[19] Lathrop K. D., Carlson B. G., Discrete ordinates angular quadrature of the neutron transport equation, LANL Rep. LA-3186, 1965, 1–48

[20] Abu-Shumays I. K., “Compatible product angular quadrature for neutron transport in $X$-$Y$ geometry”, Nucl. Sci. Engng., 64 (1977), 299

[21] Kazakov A. H., Lebedev V. I., “Kvadraturnye formuly tipa Gaussa dlya sfery, invariantnye otnositelno gruppy diedra”, Tr. Matem. in-ta RAN, 203, 1994, 100–112

[22] Shishkov L. K., Metody resheniya diffuzionnykh uravnenii dvumernogo yadernogo reaktora, Atomizdat, M., 1976

[23] Voloschenko A. M., Dubinin A. A., “ROZ-6.3 – programma dlya resheniya uravneniya perenosa neitronov i gamma-kvantov v odnomernykh geometriyakh metodom diskretnykh ordinat”, Vopr. atomnoi nauki i tekhn. Ser. Fiz. i tekhn. yadernykh reaktorov, 6(43) (1984), 30–39

[24] Base L. P., Voloschenko A. M., Germogenova T. A., Metody diskretnykh ordinat v zadachakh o perenose izlucheniya, IPMatem AN SSSR, M., 1986

[25] Voloschenko A. M., Germogenova T. A., “Numerical solution of the time-dependent transport equation with pulsed sources”, Transport Theory and Statist. Phys., 23:6 (1994), 845–869 | DOI | MR | Zbl

[26] Alcouffe R. E., “An adaptive weigthed diamond-differencing method for three-dimensional $XYZ$ geometry”, Trans. Amer. Nucl. Soc., 68A (1993), 206–209

[27] Larsen E. W., “Diffusion-synthetic acceleration methods for discrete-ordinates problems”, Transp. Theory and Statist. Phys., 13:1–2 (1984), 107–126 | DOI | MR

[28] Voloschenko A. M., “Completely consistent $P_1$ synthetic acceleration scheme for charged-particle transport calculations”, Proc. 1996 Top. Meet. Radiation Protection and Shielding., V. 1 (Falmouth, USA. April 21–25), 1996, 408–415

[29] Adams M. L., Wareing T. A., “Diffusion-synthetic acceleration given anisotropic scattering, general quadratures, and multidimensions”, Trans. Amer. Nucl. Soc., 68A (1993), 203–204

[30] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[31] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[32] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994

[33] Morel J. E., Manteuffel T. A., “An angular multigrid acceleration technique for Sn equations with highly forwardpeaked scattering”, Nucl. Sci. and Engng., 107:4 (1991), 330–342

[34] Khalil H., “A nodal diffusion technique for synthetic acceleration of nodal $S_n$ calculations”, Nucl. Sci. and Engng., 90:3 (1985), 263–280 | DOI

[35] Voloschenko A. M., “O reshenii uravneniya perenosa $DS_n$ metodom v geterogennykh sredakh. Chast 2. Odnomernye sfericheskaya i tsilindricheskaya geometrii”, Chisl. reshenie ur-niya perenosa v odnomernykh zadachakh, IPMatem. AN SSSR, M., 1981, 64–91