Gap detection in the spectrum of an elastic periodic waveguide with a free surface
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 332-343 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A three-dimensional periodic elastic waveguide is constructed whose continuous spectrum (the frequencies that admit propagating waves) contains a gap, i.e., an interval that has its ends in the continuous spectrum but contains at most a discrete spectrum. The waveguide consists of an infinite chain of massive bodies connected by short thin links, and its surface is assumed to be free. The method for detecting a gap also applies to plane problems, including scalar ones. Periodic elastic waveguides with different shapes or contrasting properties are indicated in which a gap can also be detected.
@article{ZVMMF_2009_49_2_a11,
     author = {S. A. Nazarov},
     title = {Gap detection in the spectrum of an elastic periodic waveguide with a~free surface},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {332--343},
     year = {2009},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a11/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Gap detection in the spectrum of an elastic periodic waveguide with a free surface
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 332
EP  - 343
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a11/
LA  - ru
ID  - ZVMMF_2009_49_2_a11
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Gap detection in the spectrum of an elastic periodic waveguide with a free surface
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 332-343
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a11/
%G ru
%F ZVMMF_2009_49_2_a11
S. A. Nazarov. Gap detection in the spectrum of an elastic periodic waveguide with a free surface. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 332-343. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a11/

[1] Vorovich I. I., Babeshko V. A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979 | MR

[2] Skriganov M. M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. MIAN SSSR, 171, 1985, 3–122 | MR

[3] Kuchment P., Floquet theory for partial differential equations, Birchäuser, Basel, 1993 | MR | Zbl

[4] Figotin A., Kuchment P., “Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model”, SIAM J. Appl. Math., 56 (1996), 68–88 | DOI | MR | Zbl

[5] Green E. L., “Spectral theory of Laplace–Beltrami operators with periodic metrics”, J. Different. Equat., 133 (1997), 15–29 | DOI | MR | Zbl

[6] Zhikov V. V., “O lakunakh v spektre nekotorykh divergentnykh ellipticheskikh operatorov s periodicheskimi koeffitsientami”, Algebra i analiz, 16:5 (2004), 34–58 | MR

[7] Filonov N., “Gaps in the spectrum of the Maxwell operator with periodic coefficients”, Communs. Math. Phys., 240:1–2 (2003), 161–170 | DOI | MR | Zbl

[8] Nazarov S. L., “Volny Releya dlya uprugogo polusloya s chastichno zaschemlennoi periodicheskoi granitsei”, Dokl. RAN, 423:1 (2008), 56–61 | MR

[9] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR

[10] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[11] Nazarov S. A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 101–112 | MR | Zbl

[12] Kuchment N. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi matem. nauk, 37:4 (1982), 3–52 | MR | Zbl

[13] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[14] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. gos. un-ta, L., 1980 | MR

[15] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[16] Nazarov S. A., “Neravenstva Korna dlya uprugikh sochlenenii massivnykh tel, tonkikh plastin i sterzhnei”, Uspekhi matem. nauk, 63:1(379) (2008), 37–110 | MR | Zbl

[17] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, Uspekhi matem. nauk, 43:5 (1988), 55–98

[18] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchn. kniga, Novosibirsk, 2002 | Zbl

[19] Mazja W. G., Nazarov S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, Bd. 1, Akad. Verlag, Berlin, 1991

[20] Evans D. V., Levitin M., Vasil'ev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[21] Nazarov S. A., “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauchn. seminarov peterburgskogo otd. Matem. in-ta RAN, 348, 2007, 98–126

[22] Roitberg I., Vassiliev D., Weidl T., “Edge resonance in an elastic semi-strip”, Quart. J. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl

[23] Nazarov S. A., “Lovushechnye mody dlya tsilindricheskogo uprugogo volnovoda s dempfiruyuschei prokladkoi”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 863–881 | MR | Zbl

[24] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, 19:3 (1964), 53–161

[25] Ursell F., “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 18 (1988), 495–503 | MR

[26] Bonnet-Bendhia A.-S., Duterte J., Joly P., “Mathematical analysis of elastic surface waves in topographic waveguides”, Math. Models and Meth. in Appl. Sci., 9:5 (1999), 755–798 | DOI | MR

[27] Linton C. M., Mclver P., “Embedded traped modes in water waves and acustics”, Wave Motion, 45 (2007), 16–29 | DOI | MR

[28] Nazarov C. A., “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2265–2276 | MR