@article{ZVMMF_2009_49_2_a11,
author = {S. A. Nazarov},
title = {Gap detection in the spectrum of an elastic periodic waveguide with a~free surface},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {332--343},
year = {2009},
volume = {49},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a11/}
}
TY - JOUR AU - S. A. Nazarov TI - Gap detection in the spectrum of an elastic periodic waveguide with a free surface JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 332 EP - 343 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a11/ LA - ru ID - ZVMMF_2009_49_2_a11 ER -
S. A. Nazarov. Gap detection in the spectrum of an elastic periodic waveguide with a free surface. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 332-343. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a11/
[1] Vorovich I. I., Babeshko V. A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979 | MR
[2] Skriganov M. M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. MIAN SSSR, 171, 1985, 3–122 | MR
[3] Kuchment P., Floquet theory for partial differential equations, Birchäuser, Basel, 1993 | MR | Zbl
[4] Figotin A., Kuchment P., “Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model”, SIAM J. Appl. Math., 56 (1996), 68–88 | DOI | MR | Zbl
[5] Green E. L., “Spectral theory of Laplace–Beltrami operators with periodic metrics”, J. Different. Equat., 133 (1997), 15–29 | DOI | MR | Zbl
[6] Zhikov V. V., “O lakunakh v spektre nekotorykh divergentnykh ellipticheskikh operatorov s periodicheskimi koeffitsientami”, Algebra i analiz, 16:5 (2004), 34–58 | MR
[7] Filonov N., “Gaps in the spectrum of the Maxwell operator with periodic coefficients”, Communs. Math. Phys., 240:1–2 (2003), 161–170 | DOI | MR | Zbl
[8] Nazarov S. L., “Volny Releya dlya uprugogo polusloya s chastichno zaschemlennoi periodicheskoi granitsei”, Dokl. RAN, 423:1 (2008), 56–61 | MR
[9] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | MR
[10] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991
[11] Nazarov S. A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 101–112 | MR | Zbl
[12] Kuchment N. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi matem. nauk, 37:4 (1982), 3–52 | MR | Zbl
[13] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[14] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. gos. un-ta, L., 1980 | MR
[15] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[16] Nazarov S. A., “Neravenstva Korna dlya uprugikh sochlenenii massivnykh tel, tonkikh plastin i sterzhnei”, Uspekhi matem. nauk, 63:1(379) (2008), 37–110 | MR | Zbl
[17] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, Uspekhi matem. nauk, 43:5 (1988), 55–98
[18] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchn. kniga, Novosibirsk, 2002 | Zbl
[19] Mazja W. G., Nazarov S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, Bd. 1, Akad. Verlag, Berlin, 1991
[20] Evans D. V., Levitin M., Vasil'ev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[21] Nazarov S. A., “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauchn. seminarov peterburgskogo otd. Matem. in-ta RAN, 348, 2007, 98–126
[22] Roitberg I., Vassiliev D., Weidl T., “Edge resonance in an elastic semi-strip”, Quart. J. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl
[23] Nazarov S. A., “Lovushechnye mody dlya tsilindricheskogo uprugogo volnovoda s dempfiruyuschei prokladkoi”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 863–881 | MR | Zbl
[24] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, 19:3 (1964), 53–161
[25] Ursell F., “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 18 (1988), 495–503 | MR
[26] Bonnet-Bendhia A.-S., Duterte J., Joly P., “Mathematical analysis of elastic surface waves in topographic waveguides”, Math. Models and Meth. in Appl. Sci., 9:5 (1999), 755–798 | DOI | MR
[27] Linton C. M., Mclver P., “Embedded traped modes in water waves and acustics”, Wave Motion, 45 (2007), 16–29 | DOI | MR
[28] Nazarov C. A., “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2265–2276 | MR