On the shapes of two-dimensional soliton perturbations in simple lattices
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 323-331
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The Toda lattice and the discrete Korteweg–de Vries equation generalized to two dimensions are studied numerically. The interactions are assumed to be identical in both directions. It is shown that the equations have solutions in the form of plane linear and localized solitons. In contrast to equations integrable by the inverse scattering method, the parameters of solitons change in the course of their interaction and additional wave structures are formed. The basic types of solutions characterizing these processes are presented.
            
            
            
          
        
      @article{ZVMMF_2009_49_2_a10,
     author = {S. P. Popov},
     title = {On the shapes of two-dimensional soliton perturbations in simple lattices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {323--331},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a10/}
}
                      
                      
                    TY - JOUR AU - S. P. Popov TI - On the shapes of two-dimensional soliton perturbations in simple lattices JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 323 EP - 331 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a10/ LA - ru ID - ZVMMF_2009_49_2_a10 ER -
S. P. Popov. On the shapes of two-dimensional soliton perturbations in simple lattices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 323-331. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a10/
