Finding approximations of continuous solutions to first-kind equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 225-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for constructing regularizing families of operators is proposed that is based on combinations of simple operators of the indicated structure.
@article{ZVMMF_2009_49_2_a1,
     author = {A. A. Khromov and G. V. Khromova},
     title = {Finding approximations of continuous solutions to first-kind equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {225--231},
     year = {2009},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a1/}
}
TY  - JOUR
AU  - A. A. Khromov
AU  - G. V. Khromova
TI  - Finding approximations of continuous solutions to first-kind equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 225
EP  - 231
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a1/
LA  - ru
ID  - ZVMMF_2009_49_2_a1
ER  - 
%0 Journal Article
%A A. A. Khromov
%A G. V. Khromova
%T Finding approximations of continuous solutions to first-kind equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 225-231
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a1/
%G ru
%F ZVMMF_2009_49_2_a1
A. A. Khromov; G. V. Khromova. Finding approximations of continuous solutions to first-kind equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 2, pp. 225-231. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_2_a1/

[1] Tikhonov A. N., “O regulyarizatsii nekorrektno postavlennykh zadach”, Dokl. AN SSSR, 153:1 (1963), 49–52 | MR | Zbl

[2] Khromova G. V., “Ob otsenkakh pogreshnosti priblizhennykh reshenii uravnenii pervogo roda”, Dokl. RAN, 378:5 (2001), 605–609 | MR | Zbl

[3] Khromova G. V., “Priblizhayuschie svoistva rezolvent differentsialnykh operatorov v zadache priblizheniya funktsii i ikh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1106–1113 | MR | Zbl

[4] Ivanov V. K., “Ob integralnykh uravneniyakh Fredgolma pervogo roda”, Differents. ur-niya, 3:3 (1967), 410–421 | Zbl

[5] Khromov A. A., “Priblizhenie reshenii prosteishego integralnogo uravneniya s pomoschyu summ Feiera”, Sovrem. probl. teorii f-tsii i ikh prilozh., Tezisy dokl. XIV Saratovskoi zimnei shkoly, posv. pamyati akad. P. L. Ulyanova (28 yanv.–4 fevr. 2008 g.), Saratovskii gos. un-t, Saratov, 2008, 199–200

[6] Denisov A.M., “O priblizhennom reshenii uravneniya Volterra pervogo roda”, Zh. vychisl. matem. i matem. fiz., 15:4 (1975), 1053–1056 | MR | Zbl

[7] Saadabaev A., “Otsenka tochnosti priblizhennogo resheniya integralnogo uravneniya pervogo roda v ravnomernoi metrike”, Issl. po integrodifferents. ur-niyam, 21, IL IM, Frunze, 1988, 77–83 | MR

[8] Bakushinskii A. B., Goncharskii A. B., Nekorrrektnye zadachi. Chislennye metody i prilozheniya, MGU, M., 1989