Solution of the skin effect problem with an arbitrary coefficient of specular reflection
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 137-151
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analytical solution of the skin effect problem in a metal with specular-diffuse boundary conditions is obtained. A new analytical method is developed that makes it possible to obtain a solution up to an arbitrary degree of accuracy. The method is based on the idea of representing not only the boundary condition on the field in the form of a source (which is conventional) but also the boundary condition on the distribution function. The solution is obtained in the form of a von Neumann series.
@article{ZVMMF_2009_49_1_a9,
     author = {A. V. Latyshev and A. A. Yushkanov},
     title = {Solution of the skin effect problem with an arbitrary coefficient of specular reflection},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {137--151},
     year = {2009},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a9/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - A. A. Yushkanov
TI  - Solution of the skin effect problem with an arbitrary coefficient of specular reflection
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 137
EP  - 151
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a9/
LA  - ru
ID  - ZVMMF_2009_49_1_a9
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A A. A. Yushkanov
%T Solution of the skin effect problem with an arbitrary coefficient of specular reflection
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 137-151
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a9/
%G ru
%F ZVMMF_2009_49_1_a9
A. V. Latyshev; A. A. Yushkanov. Solution of the skin effect problem with an arbitrary coefficient of specular reflection. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 137-151. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a9/

[1] Abrikosov A. A., Osnovy teorii metalla, Nauka, M., 1977

[2] Plattsman F., Volf P., Volny i vzaimodeistviya v plazme tverdykh tel, Mir, M., 1975

[3] Reuter G. E. H., Sondheimer E. H., “Theory of the anomalous skin effect in metals”, Proc. Roy. Soc. A, 195 (1948), 336–352 | DOI

[4] Zavitaev E. V., Yushkanov A. A., “Zavisimost elektricheskoi provodimosti tonkoi tsilindricheskoi provoloki v prodolnom magnitnom pole ot kharaktera otrazheniya elektronov”, Zh. eksperim. i teor. fiz., 130:5 (2006), 887–894

[5] Chambers R. G., “The conductivity of thin wires in a magnetic field”, Proc. Roy. Soc. A, 202 (1950), 378–394 | DOI | MR | Zbl

[6] Andreev A. F., “Vzaimodeistvie provodyaschikh elektronov s poverkhnostyu metalla”, Uspekhi fiz. nauk, 105:1 (1971), 113–124

[7] Ginzburg V., Motulevin G. P., “Opticheskie svoistva metallov”, Uspekhi fiz. nauk, 55:4 (1955), 469–535 | Zbl

[8] Esquivel R., Svetovoy V. B., Correction to the Casimir force due to the anomalous skin effect, arXiv:physics/quant-ph/0404073

[9] Voloshin I. F., Podlevskikh H. A., Skobov V. T. i dr., “Ostsillyatsii impedansa metallicheskoi plastiny i kharakter otrazheniya elektronov”, Zh. eksperim. i teor. fiz., 83:11 (1984), 1955–1970

[10] Kliewer K. L., Fuchs R., “Anomalous skin effect for specular electron scattering and optical experiments at non-normal angles of incidence”, Phys. Rev., 172:3 (1968), 607–624 | DOI

[11] Latyshev A. B., Yushkanov A. A., “Primenenie metoda Keiza k analiticheskomu resheniyu obobschennoi zadachi o skin-effekte v metalle”, Zh. vychisl. matem. i matem. fiz., 39:6 (1999), 989–1005 | MR | Zbl

[12] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl