A variant of the finite superelement method for computing viscous incompressible flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 123-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A variant of the finite superelement method (FSEM) is proposed for computing viscous incompressible convection-dominated flows on a triangular unstructured mesh. To construct the high-order FSEM scheme, vector polynomial test functions (SE basis) are calculated in each grid cell by solving the linearized Navier-Stokes equations with special boundary conditions in the form of basis functions in the trace space.
@article{ZVMMF_2009_49_1_a8,
     author = {L. G. Strakhovskaya},
     title = {A variant of the finite superelement method for computing viscous incompressible flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {123--136},
     year = {2009},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a8/}
}
TY  - JOUR
AU  - L. G. Strakhovskaya
TI  - A variant of the finite superelement method for computing viscous incompressible flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 123
EP  - 136
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a8/
LA  - ru
ID  - ZVMMF_2009_49_1_a8
ER  - 
%0 Journal Article
%A L. G. Strakhovskaya
%T A variant of the finite superelement method for computing viscous incompressible flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 123-136
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a8/
%G ru
%F ZVMMF_2009_49_1_a8
L. G. Strakhovskaya. A variant of the finite superelement method for computing viscous incompressible flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 123-136. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a8/

[1] Strakhovskaya L. G., Fedorenko R. P., “Ob odnom variante metoda konechnykh elementov”, Zh. vychisl. matem. i matem. fiz., 19:4 (1979), 950–960 | MR | Zbl

[2] Zhukov V. T., Strakhovskaya L. G., Fedorenko R. P., Feodoritova O. B., “Ob odnom napravlenii v konstruirovanii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 42:2 (2002), 222–234 | MR | Zbl

[3] Zhukov V. T., Novikova N. D., Strakhovskaya L. G. i dr., “Primenenie metoda konechnykh superelementov dlya zadach konvektsii-diffuzii”, Matem. modelirovanie, 14:11 (2002), 78–92 | MR | Zbl

[4] Strakhovskaya L. G., Fedorenko R. P., “Ob odnoi spetsialnoi raznostnoi skheme”, Chisl. metody mekhan. sploshnoi sredy. Novosibirsk: VTs SO AN SSSR, 7:4 (1976), 149–163

[5] Klimov A. D., Strakhovskaya L. G., Fedorenko R. P., “Metod konechnykh superelementov i gomogenizatsiya”, Zh. vychisl. matem. i matem. fiz., 43:5 (2003), 697–712 | MR | Zbl

[6] Fedorenko R. P., Strakhovskaya L. G., “On numerical solution of the Lame equations”, Int. J. Comput. Civil and Structural Engng., 1:1 (2000), 1–23 | MR

[7] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[8] Strakhovskaya L. G., “Metod konechnykh superelementov dlya linearizovannykh uravnenii Nave–Stoksa na proizvolnoi treugolnoi setke”, XIV Vseros. Konf. “Teor. osnovy i konstruirovanie chisl. algoritmov resheniya zadach matem. fiz.” (Dyurso, 18–22 sentyabrya, 2002 g.), UrO RAN, Ekaterinburg, 2002, 54–55

[9] Shaidurov V. V., “Vychislitelnye metody dlya uravnenii Nave–Stoksa vyazkoi neszhimaemoi zhidkosti”, Vestn. KrasGU. Fiz.-matem. nauki, 2004, no. 3, 143–153, SO RAN, Krasnoyarsk

[10] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[11] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994

[12] Galanin M. P., Savenkov E. B., “K obosnovaniyu metoda konechnykh superelementov”, Zh. vychisl. matem. i matem. fiz., 43:5 (2003), 713–729 | MR | Zbl

[13] Strakhovskaya L. G., Ob odnom variante MKSE dlya uravnenii Nave–Stoksa, Preprint No 90, IPMatem. RAN, M., 2006, 24 pp.

[14] Franca L. P., Nesliturk A., “On a two-level finite element method for the incompressible Navier–Stokes equations”, Int. J. Numer. Meth. Engng., 52:4 (2001), 433–453 | DOI | Zbl

[15] Strakhovskaya L. G., “High order FSEM schemes for simulation of viscous incompressible flows”, Internat. Conf. “Tikhonov and Contemporary Math.” Abstr. Session Comput. Math. and Informatics, M., 2006, 117–118

[16] Strakhovskaya L. G., “The high order finite superelement method for incompressible Navier–Stokes equations”, VI Internat. Congress on Math. Modeling, Abstr. (Sept. 20–26, 2004), Nizhny Novgorod, 2004, 304

[17] Marinova R. S., Christov C. I., Marinov T. T., “A fully coupled solver for incompressible Navier–Stokes equations using operator splitting”, Intern. Comput. Fluid Dynamics, 17 (2003), 371–385 | DOI | MR | Zbl

[18] Ghia U., Ghia K. N., Shin C. T., “High-resolutions for incompressible flow using the Navier–Stokes equations and multigrid method”, J. Comput. Phys., 48 (1982), 387–411 | DOI | Zbl