A fundamental solution to the Cauchy problem for a fourth-order pseudoparabolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 99-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for a fourth-order pseudoparabolic equation describing liquid filtration problems in fissured media, moisture transfer in soil, etc., is studied. Under certain summability and boundedness conditions imposed on the coefficients, the operator of this problem and its adjoint operator are proved to be homeomorphism between certain pairs of Banach spaces. Introduced under the same conditions, the concept of a $\theta$-fundamental solution is introduced, which naturally generalizes the concept of the Riemann function to the equations with discontinuous coefficients; the new concept makes it possible to find an integral form of the solution to a nonhomogeneous problem.
@article{ZVMMF_2009_49_1_a6,
     author = {I. G. Mamedov},
     title = {A fundamental solution to the {Cauchy} problem for a fourth-order pseudoparabolic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {99--110},
     year = {2009},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a6/}
}
TY  - JOUR
AU  - I. G. Mamedov
TI  - A fundamental solution to the Cauchy problem for a fourth-order pseudoparabolic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 99
EP  - 110
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a6/
LA  - ru
ID  - ZVMMF_2009_49_1_a6
ER  - 
%0 Journal Article
%A I. G. Mamedov
%T A fundamental solution to the Cauchy problem for a fourth-order pseudoparabolic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 99-110
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a6/
%G ru
%F ZVMMF_2009_49_1_a6
I. G. Mamedov. A fundamental solution to the Cauchy problem for a fourth-order pseudoparabolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 99-110. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a6/

[1] Borovikov V. A., “Fundamentalnoe reshenie lineinogo uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Dokl. AN SSSR, 119:3 (1958), 403–410 | MR

[2] Gilev V. D., Shadrin G. A., “Postroenie fundamentalnogo resheniya dlya uravneniya, opisyvayuschego dvizhenie zhidkosti v treschinovatykh sredakh”, Vychisl. matem. i programmirovanie, 4, Izd-vo MGPI im. V. I. Lenina, M., 1976, 102–111

[3] Yurchuk N. I., Baranovskaya C. H., Yashkin V. I., “O klassicheskikh i oslablennykh klassicheskikh resheniyakh giperbolicheskikh uravnenii”, Tezisy dokl. Mezhdunar. konf., posvyasch. 75-letiyu chl.-korr. RAN prof. L. D. Kudryavtseva, M., 1998, 71

[4] Showalter R. E., Ting T. W., “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1 (1970), 1–26 | DOI | MR | Zbl

[5] Rundell W., “The uniqueness class for the Cauchy problem for pseudoparabolic equations”, Poc. Amer. Match. Soc., 76:2 (1979), 253–257 | DOI | MR | Zbl

[6] Mangeron D., “New methods for determining solutions of mathematical models governing polyvibrating phenomena”, Bul. Inst. Polit. Din. Zasi., 14:18 (1968), 433–436 | Zbl

[7] Colton D., “Pseudoparabolic equations in one space variable”, J. Different. Equat., 12:3 (1972), 559–565 | DOI | MR | Zbl

[8] Shkhanukov M. X., Soldatov A. P., “Kraevye zadachi s obschim nelokalnym usloviem A. A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, Dokl. AN SSSR, 297:3 (1987), 547–552 | MR

[9] Lerner M. E., “O kachestvennykh svoistvakh funktsii Rimana”, Differents. ur-niya, 27:12 (1991), 2106–2119 | MR

[10] Troitskaya S. D., “O pervoi kraevoi zadache dlya giperbolicheskogo uravneniya na ploskosti”, Matem. zametki, 65:2 (1999), 294–306 | MR | Zbl

[11] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matem., 1999, no. 10, 73–76 | MR | Zbl

[12] Midodashvili B., “Genaralized Goursat problem for a spatial fourth order hyperbolic equation with dominated low terms”, Proc. A. Razmadze Math. Inst., 138 (2005), 43–54 | MR | Zbl

[13] Mamedov I. G., “Zadacha Koshi novogo tipa dlya vsevdoparabolicheskogo uravneniya s dominiruyuschei proizvodnoi chetvertogo poryadka s negladkimi koeffitsientami”, Tezisy XII mezhdunar. konf. po matem. i mekhan., posvyaschennoi 70-letnemu yubileyu chl.-korr. HAH Azerbaidzhana, prof. B. A. Iskenderova, Baku, 2006, 108

[14] Mamedov I. G., “A New type Cauchy problem for a pseudoparabolic equation with a fourth order dominating derivative with non-smooth coefficients”, Mathematics, 5 (2007), 34–40

[15] Mamedov I. G., “Zadacha Gursa novogo tipa dlya nagruzhennykh volterro-giperbolicheskikh integro-differentsialnykh vektornykh uravnenii chetvertogo poryadka s negladkimi matrichnymi koeffitsientami”, Izv. HAH Azerbaidzhana. Ser. FTMN, 26:2 (2006), 74–79