Extremal dynamics of the generalized Hutchinson equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 76-89
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A scalar nonlinear differential-difference equation with two delays that generalizes Hutchinson's equation is considered. The bifurcation of self-oscillations of this equation from the zero equilibrium is studied in the extremal situation when one delay is asymptotically large while the other parameters are on the order of unity. Analytical methods combined with numerical techniques are used to show that the well-known buffer phenomenon occurs in the equation in this case. This means that an arbitrary finite number of different attractors coexist in the phase space of the equation with suitably chosen parameters.
@article{ZVMMF_2009_49_1_a4,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Extremal dynamics of the generalized {Hutchinson} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {76--89},
     year = {2009},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a4/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Extremal dynamics of the generalized Hutchinson equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 76
EP  - 89
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a4/
LA  - ru
ID  - ZVMMF_2009_49_1_a4
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Extremal dynamics of the generalized Hutchinson equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 76-89
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a4/
%G ru
%F ZVMMF_2009_49_1_a4
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Extremal dynamics of the generalized Hutchinson equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 76-89. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a4/

[1] Hutchinson G. E., “Circular causal systems in ecology”, Ann. N.Y. Acad. Sci., 50 (1948), 221–246 | DOI

[2] Nussbaum R. D., Differential-delay equations with two time lags, Memoirs Amer. Math. Soc., 16, no. 205, 1977 | MR

[3] Goryachenko V. D., “Issledovanie dinamiki chislennosti otdelnoi populyatsii s uchetom posledeistviya. Kratkii obzor”, Nelineinye kolebaniya i ekologiya, YarGU, Yaroslavl, 1984, 66–82 | MR

[4] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[5] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR

[6] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005

[7] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR

[8] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[9] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii”, Tr. MI RAN, 222, Nauka, M., 1998, 3–191

[10] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[11] Kaschenko S. A., “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Differents. ur-niya, 25:8 (1982), 1448–1451

[12] Kaschenko S. A., “Uravneniya Ginzburga–Landau – normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR

[13] Vasileva A. B., Kaschenko S.A., Kolesov Yu. S., Rozov N. Kh., “Bifurkatsiya avtokolebanii nelineinykh parabolicheskikh uravnenii s maloi diffuziei”, Matem. sb., 130:4 (1986), 488–499 | MR

[14] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Novye dokazatelstva suschestvovaniya i ustoichivosti periodicheskikh reshenii v singulyarno vozmuschennykh sistemakh s zapazdyvaniem”, Tr. MI RAN, 259, M., 2007, 106–133 | MR | Zbl

[15] Reissing R., Sansone G., Konti R., Kachestvennaya teoriya nelineinykh differentsialnykh uravnenii, Nauka, M., 1974 | MR

[16] Bogolyubov H. H., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[17] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[18] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR