Determination of functional gradient in an optimal control problem related to metal solidification
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 51-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The gradient of the cost functional in the discrete optimal control problem of metal solidification in casting is exactly evaluated. The mathematical model describing the solidification process is based on a three-dimensional two-phase initial-boundary value problem of the Stefan type. Formulas determining exact gradient determination are derived using the fast automatic differentiation technique.
@article{ZVMMF_2009_49_1_a3,
     author = {A. F. Albu and V. I. Zubov},
     title = {Determination of functional gradient in an optimal control problem related to metal solidification},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {51--75},
     year = {2009},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a3/}
}
TY  - JOUR
AU  - A. F. Albu
AU  - V. I. Zubov
TI  - Determination of functional gradient in an optimal control problem related to metal solidification
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 51
EP  - 75
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a3/
LA  - ru
ID  - ZVMMF_2009_49_1_a3
ER  - 
%0 Journal Article
%A A. F. Albu
%A V. I. Zubov
%T Determination of functional gradient in an optimal control problem related to metal solidification
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 51-75
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a3/
%G ru
%F ZVMMF_2009_49_1_a3
A. F. Albu; V. I. Zubov. Determination of functional gradient in an optimal control problem related to metal solidification. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 51-75. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a3/

[1] Albu A. F., Zubov V. I., “Matematicheskoe modelirovanie i issledovanie protsessa kristallizatsii metalla v liteinom dele”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 882–902 | MR

[2] Albu A. F., Zubov V. I., “Ob optimalnom upravlenii protsessom kristallizatsii metalla v liteinom dele”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 851–862 | MR | Zbl

[3] Albu A. F., Gorbunov V. I., Zubov V. I., “Optimalnoe upravlenie protsessom plavleniya”, Zh. vychisl. matem. i matem. fiz., 40:4 (2000), 517–531 | MR | Zbl

[4] Albu A. F., Zubov V. I., “Optimalnoe upravlenie protsessom kristallizatsii veschestva”, Zh. vychisl. matem. i matem. fiz., 44:1 (2004), 38–50 | MR | Zbl

[5] Albou A. F., Zubov V. l., “Modeling and optimization of melting and solidification process”, Bul. Acad. Ştiinţe Repub. Mold. Matematica, 46:3 (2004), 91–109 | MR | Zbl

[6] Evtushenko Y. G., “Computation of exact gradients in distributed dynamic systems”, Optimizat. Methods and Software, 9 (1998), 45–75 | DOI | MR | Zbl

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl