Algebra over estimation algorithms: Normalization with respect to the interval
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 200-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Algebra over estimation algorithms with addition, multiplication by a constant, and normalization operations is investigated. Normalization is interpreted as a linear (with respect to each row) transformation of the matrix of estimates that takes the maximum entry of the row to unity and the minimum entry to zero. The algebraic closure is described, a formula for its dimension is obtained, and correctness criteria are formulated.
@article{ZVMMF_2009_49_1_a13,
     author = {A. G. D'yakonov},
     title = {Algebra over estimation algorithms: {Normalization} with respect to the interval},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {200--208},
     year = {2009},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a13/}
}
TY  - JOUR
AU  - A. G. D'yakonov
TI  - Algebra over estimation algorithms: Normalization with respect to the interval
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 200
EP  - 208
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a13/
LA  - ru
ID  - ZVMMF_2009_49_1_a13
ER  - 
%0 Journal Article
%A A. G. D'yakonov
%T Algebra over estimation algorithms: Normalization with respect to the interval
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 200-208
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a13/
%G ru
%F ZVMMF_2009_49_1_a13
A. G. D'yakonov. Algebra over estimation algorithms: Normalization with respect to the interval. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 200-208. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a13/

[1] Dyakonov A. G., “Algebra nad algoritmami vychisleniya otsenok: normirovka i delenie”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1099–1109

[2] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33, Nauka, M., 1978, 5–68

[3] Zhuravlev Yu. I., Nikiforov V. V., “Algoritmy raspoznavaniya, osnovannye na vychislenii otsenok”, Kibernetika, 1971, no. 3, 1–11 | Zbl

[4] Zhuravlev Yu. I., “Korrektnye algoritmy nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. II”, Kibernetika, 1977, no. 6, 21–27 | Zbl

[5] Dyakonov A. G., “Algebra nad algoritmami vychisleniya otsenok: minimalnaya stepen korrektnogo algoritma”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 1134–1145 | MR

[6] Dyakonov A. G., Algebra nad algoritmami vychisleniya otsenok, Uch. posobie, Izd-vo MGU, M., 2006

[7] Ilin V. A., Kim G. D., Lineinaya algebra i analiticheskaya geometriya, Uchebnik, Izd-vo MGU, M., 1998