Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 189-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An X-ray tomography problem is formulated and analyzed within the framework of a mathematical model based on the polychromatic stationary radiative transfer equation with no collision integral. It is assumed that the outgoing radiation density is only given, and the task is to find the surface of an internal inclusion on whose boundary the coefficients of the equation may have jump discontinuities. The uniqueness of the solution is proved, and the corresponding solution algorithm is outlined. A feature of this work is that the research technique is local in character. This makes it possible to use only some of the available data, and the procedure can be stopped at an intermediate stage of the reconstruction, which can be useful in applications.
@article{ZVMMF_2009_49_1_a12,
     author = {D. S. Konovalova},
     title = {Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {189--199},
     year = {2009},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a12/}
}
TY  - JOUR
AU  - D. S. Konovalova
TI  - Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 189
EP  - 199
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a12/
LA  - ru
ID  - ZVMMF_2009_49_1_a12
ER  - 
%0 Journal Article
%A D. S. Konovalova
%T Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 189-199
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a12/
%G ru
%F ZVMMF_2009_49_1_a12
D. S. Konovalova. Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 189-199. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a12/

[1] Leipunskii O. I., Novozhilov B. A., Sakharov V. I., Rasprostranenie gamma-kvantov v veschestve, Fizmatgiz, M., 1960

[2] Fano U., Spenser L., Berger M., Perenos gamma-izlucheniya, Gosatomizdat, M., 1963

[3] Hubbell J. H., Seltzer S. M., Tables of X-RAY mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements $Z=1$ to 92 and 48 additional substances of dosimetric interest, NISTIR-5632, Nat. Inst. of Stand. and Technol., Gaithersburg, 1995

[4] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[5] Arbuzov E. V., Bukhgeim A. L., Kazantsev S. G., “Two-dimensional tomography problems and the theory of $A$-analytic functions”, Algebra, Geometry, Analysis and Math. Phys., Novosibirsk, 1997, 6–20 | MR

[6] Novikov R. G., An inversion formula for the attenuated X-ray transformation, Preprint CNRS, UMR 6629, Dept. Math., Univ. de Nantes, 2000

[7] Novikov R. G., “An inversion formula for the attenuated X-ray transformation”, Arkiv. Math., 40:1, 145–167 | DOI | MR | Zbl

[8] Bukhgeim A. A., Kazantsev S. G., Inversion formula for the fan-beam attenuated Radon transform in a unit disc, Preprint RAS no 99, Siberian Dept. Inst. Math., Novosibirsk, 2002 | MR | Zbl

[9] Kazantsev S. G., Bukhgeim A. A., “Inversion of the scalar and vector attenuated X-ray transforms in a unit Disc”, J. Inverse and Ill-Posed Probl., 15:7 (2007), 735–765 | DOI | MR | Zbl

[10] Anikonov D. S., “Mnogomernye obratnye zadachi dlya uravneniya perenosa”, Differents. ur-niya, 20:5 (1984), 817–824 | MR | Zbl

[11] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[12] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Transport equation and tomography, VSP, Utrecht, Boston, 2002 | MR

[13] Vladimirov B. C., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, M., 1961, 3–158

[14] Germogenova T. A., Lokalnye svoistva resheniya uravneniya perenosa, Nauka, M., 1986 | MR | Zbl