@article{ZVMMF_2009_49_1_a12,
author = {D. S. Konovalova},
title = {Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {189--199},
year = {2009},
volume = {49},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a12/}
}
TY - JOUR AU - D. S. Konovalova TI - Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 189 EP - 199 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a12/ LA - ru ID - ZVMMF_2009_49_1_a12 ER -
%0 Journal Article %A D. S. Konovalova %T Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 189-199 %V 49 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a12/ %G ru %F ZVMMF_2009_49_1_a12
D. S. Konovalova. Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 189-199. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a12/
[1] Leipunskii O. I., Novozhilov B. A., Sakharov V. I., Rasprostranenie gamma-kvantov v veschestve, Fizmatgiz, M., 1960
[2] Fano U., Spenser L., Berger M., Perenos gamma-izlucheniya, Gosatomizdat, M., 1963
[3] Hubbell J. H., Seltzer S. M., Tables of X-RAY mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements $Z=1$ to 92 and 48 additional substances of dosimetric interest, NISTIR-5632, Nat. Inst. of Stand. and Technol., Gaithersburg, 1995
[4] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl
[5] Arbuzov E. V., Bukhgeim A. L., Kazantsev S. G., “Two-dimensional tomography problems and the theory of $A$-analytic functions”, Algebra, Geometry, Analysis and Math. Phys., Novosibirsk, 1997, 6–20 | MR
[6] Novikov R. G., An inversion formula for the attenuated X-ray transformation, Preprint CNRS, UMR 6629, Dept. Math., Univ. de Nantes, 2000
[7] Novikov R. G., “An inversion formula for the attenuated X-ray transformation”, Arkiv. Math., 40:1, 145–167 | DOI | MR | Zbl
[8] Bukhgeim A. A., Kazantsev S. G., Inversion formula for the fan-beam attenuated Radon transform in a unit disc, Preprint RAS no 99, Siberian Dept. Inst. Math., Novosibirsk, 2002 | MR | Zbl
[9] Kazantsev S. G., Bukhgeim A. A., “Inversion of the scalar and vector attenuated X-ray transforms in a unit Disc”, J. Inverse and Ill-Posed Probl., 15:7 (2007), 735–765 | DOI | MR | Zbl
[10] Anikonov D. S., “Mnogomernye obratnye zadachi dlya uravneniya perenosa”, Differents. ur-niya, 20:5 (1984), 817–824 | MR | Zbl
[11] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000
[12] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Transport equation and tomography, VSP, Utrecht, Boston, 2002 | MR
[13] Vladimirov B. C., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, M., 1961, 3–158
[14] Germogenova T. A., Lokalnye svoistva resheniya uravneniya perenosa, Nauka, M., 1986 | MR | Zbl