Strong convergence of difference approximations in the problem of transverse vibrations of thin elastic plates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 152-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of transverse vibrations of a thin elastic plate is considered. It is proved that the differential operators of the boundary value problem are regularly elliptic, and weak solutions are estimated. For a previously developed difference method, the solution to the difference problem is proved to converge strongly to a weak solution of the original differential problem and the rate of convergence is estimated.
@article{ZVMMF_2009_49_1_a10,
     author = {A. A. Kuleshov and V. V. Mymrin and A. V. Razgulin},
     title = {Strong convergence of difference approximations in the problem of transverse vibrations of thin elastic plates},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {152--177},
     year = {2009},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a10/}
}
TY  - JOUR
AU  - A. A. Kuleshov
AU  - V. V. Mymrin
AU  - A. V. Razgulin
TI  - Strong convergence of difference approximations in the problem of transverse vibrations of thin elastic plates
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 152
EP  - 177
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a10/
LA  - ru
ID  - ZVMMF_2009_49_1_a10
ER  - 
%0 Journal Article
%A A. A. Kuleshov
%A V. V. Mymrin
%A A. V. Razgulin
%T Strong convergence of difference approximations in the problem of transverse vibrations of thin elastic plates
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 152-177
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a10/
%G ru
%F ZVMMF_2009_49_1_a10
A. A. Kuleshov; V. V. Mymrin; A. V. Razgulin. Strong convergence of difference approximations in the problem of transverse vibrations of thin elastic plates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 152-177. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a10/

[1] Kuleshov A. A., “O raznostnoi approksimatsii zadachi poperechnykh kolebanii tonkikh uprugikh plastin”, Zh. vychisl. matem. i matem. fiz., 45:4 (2005), 718–740 | MR | Zbl

[2] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Fizmatlit, M., 1963

[3] Landau L. D., Livshits E. M., Teoriya uprugosti, Nauka, M., 1987 | MR | Zbl

[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999

[6] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[7] Lions J. -L., Magenes E., Non-homogeneous boundary value problems and applications, V. 2, Springer, Berlin, 1972

[8] Tribel X., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[10] Samarskii A. A., Tulin A. B., Chislennye metody, Nauka, M., 1989 | MR

[11] Kuleshov A. A., “Raznostnaya approksimatsiya i regulyarizatsiya odnoi zadachi optimalnogo upravleniya protsessom, opisyvaemym ellipticheskim uravneniem”, Dokl. AN SSSR, 269:4 (1983), 809–813 | MR | Zbl

[12] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shkola, M., 1987

[13] Mokin Yu. I., “Setochnyi analog teoremy vlozheniya dlya klassov tipa $W$”, Zh. vychisl. matem. i matem. fiz., 11:6 (1971), 1361–1373 | MR | Zbl