Error estimates in $S_p$ for cubature formulas exact for Haar polynomials in the two-dimensional case
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the spaces $S_p$, an upper estimate is found for the norm of the error functional $\delta_N(f)$ of cubature formulas possessing the Haar $d$-property in the two-dimensional case. An asymptotic relation is proved for $\|\delta_N(f)\|_{S_p^*}$ with the number of nodes $N\sim 2^d$, where $d\to\infty$. For $N\sim 2^d$ with $d\to\infty$, it is shown that the norm of $\delta_N$ for the formulas under study has the best convergence rate, which is equal to $N^{-1/p}$.
@article{ZVMMF_2009_49_1_a0,
     author = {K. A. Kirillov and M. V. Noskov},
     title = {Error estimates in $S_p$ for cubature formulas exact for {Haar} polynomials in the two-dimensional case},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {3--13},
     year = {2009},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a0/}
}
TY  - JOUR
AU  - K. A. Kirillov
AU  - M. V. Noskov
TI  - Error estimates in $S_p$ for cubature formulas exact for Haar polynomials in the two-dimensional case
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 3
EP  - 13
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a0/
LA  - ru
ID  - ZVMMF_2009_49_1_a0
ER  - 
%0 Journal Article
%A K. A. Kirillov
%A M. V. Noskov
%T Error estimates in $S_p$ for cubature formulas exact for Haar polynomials in the two-dimensional case
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 3-13
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a0/
%G ru
%F ZVMMF_2009_49_1_a0
K. A. Kirillov; M. V. Noskov. Error estimates in $S_p$ for cubature formulas exact for Haar polynomials in the two-dimensional case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_1_a0/

[1] Sobol I. M., Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969 | MR

[2] Entacher K., “Quasi-Monte Carlo methods for numerical integration of multivariate Haar series”, BIT (Dan), 37:4 (1997), 846–861 | DOI | MR | Zbl

[3] Entacher K., “Quasi-Monte Carlo methods for numerical integration of multivariate Haar series. II”, BIT (Dan), 38:2 (1998), 283–292 | DOI | MR | Zbl

[4] Kirillov K. L., “Postroenie minimalnykh kubaturnykh formul, tochnykh dlya polinomov Khaara vysshikh stepenei v dvumernom sluchae”, Vychisl. tekhnologii, 1, Spets. vypusk (2005), 29–47

[5] Haar A., “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl

[6] Kirillov K L., Noskov M. B., “Minimalnye kvadraturnye formuly, tochnye dlya polinomov Khaara”, Zh. vychisl. matem. i matem. fiz., 42:6 (2002), 791–799 | MR | Zbl