Mathematical modeling of electromagnetic wave propagation in nonlinear electrodynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 12, pp. 2189-2200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The eikonal method for an electromagnetic wave propagating according to the laws of non-linear electrodynamics in vacuum in external electromagnetic and gravitational fields is developed. A mathematical model of the propagation of electromagnetic signals in the parameterized post-Maxwellian electrodynamics in vacuum is constructed. As an example of using the proposed method, the angles of the nonlinear electrodynamical and gravitational curvature of the normal wave rays propagating in the field of a charged collapsar are calculated.
@article{ZVMMF_2009_49_12_a8,
     author = {P. A. Vshivtseva and M. M. Denisov},
     title = {Mathematical modeling of electromagnetic wave propagation in nonlinear electrodynamics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2189--2200},
     year = {2009},
     volume = {49},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a8/}
}
TY  - JOUR
AU  - P. A. Vshivtseva
AU  - M. M. Denisov
TI  - Mathematical modeling of electromagnetic wave propagation in nonlinear electrodynamics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 2189
EP  - 2200
VL  - 49
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a8/
LA  - ru
ID  - ZVMMF_2009_49_12_a8
ER  - 
%0 Journal Article
%A P. A. Vshivtseva
%A M. M. Denisov
%T Mathematical modeling of electromagnetic wave propagation in nonlinear electrodynamics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 2189-2200
%V 49
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a8/
%G ru
%F ZVMMF_2009_49_12_a8
P. A. Vshivtseva; M. M. Denisov. Mathematical modeling of electromagnetic wave propagation in nonlinear electrodynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 12, pp. 2189-2200. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a8/

[1] Burke D. L., Fild R. I., Horton-Smith J. et al., “Positron production in muitiphoton light-by-light scattering”, Phys. Rev. Letts., 79:9 (1997), 1626–1629 | DOI

[2] Born M., Infeld L., “Foundation of the new field theory”, Proc. Roy. Soc. A, 144 (1934), 425–430 | DOI

[3] Heisenberg W., Euler H., “Consequences of Dirac theory of the positron”, Z. Phys., 26 (1936), 714–720

[4] Khalilov V. P., Elektrony v silnom magnitnom pole, Energoatom izdat., M., 1988

[5] Denisov V. I., Denisova I. P., “Proveryaemyi post-maksvellovskii effekt nelineinoi elektrodinamiki v vakuume”, Optika i spektroskopiya, 90:2 (2001), 329–335 | MR

[6] Uill K., Teoriya i eksperiment v gravitatsionnoi fizike, Energoatom izdat., M., 1985

[7] Denisov V. I., “New effect in nonlinear Born–Infeld electrodynamics”, Phys. Rev. D, 61:3 (2000), 036004 | DOI | MR

[8] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1988 | MR

[9] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[10] Denisova I. P., Vvedenie v tenzornoe ischislenie i ego prilozheniya, UNTs DO, M., 2004

[11] Kotlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vyssh. shkola, M., 1970

[12] Chandrasekar S., Matematicheskaya teoriya chernykh dyr, Mir, M., 1986