Approximation of smooth solutions to integral equations with degenerate kernels
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 12, pp. 2156-2166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for finding approximate smooth solutions to an integral equation of the second kind with a degenerate kernel. It is assumed that the inverse operator is unbounded.
@article{ZVMMF_2009_49_12_a5,
     author = {A. A. Khromov},
     title = {Approximation of smooth solutions to integral equations with degenerate kernels},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2156--2166},
     year = {2009},
     volume = {49},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a5/}
}
TY  - JOUR
AU  - A. A. Khromov
TI  - Approximation of smooth solutions to integral equations with degenerate kernels
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 2156
EP  - 2166
VL  - 49
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a5/
LA  - ru
ID  - ZVMMF_2009_49_12_a5
ER  - 
%0 Journal Article
%A A. A. Khromov
%T Approximation of smooth solutions to integral equations with degenerate kernels
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 2156-2166
%V 49
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a5/
%G ru
%F ZVMMF_2009_49_12_a5
A. A. Khromov. Approximation of smooth solutions to integral equations with degenerate kernels. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 12, pp. 2156-2166. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a5/

[1] Mikhlin S. G., Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959 | MR

[2] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[3] Khromov A. A., Khromova G. V., “O nakhozhdenii priblizhenii k nepreryvnym resheniyam uravnenii I roda”, Zh. vychisl. matem. i matem. fiz., 49:2 (2009), 225–231 | MR | Zbl

[4] Khromov A. A., “O priblizhennom reshenii uravneniya pervogo roda s operatorom integrirovaniya”, Sovrem. metody teorii kraevykh zadach, Materialy Voronezhskoi vesennei matem. shkoly “Pontryaginskie chteniya-XIX”, Voronezhskii gos. un-t, Voronezh, 224–225

[5] Khromov A. A., “Priblizhenie reshenii prosteishego integralnogo uravneniya s pomoschyu summ Feiera”, Sovrem. probl. teorii funktsii i ikh prilozh., Tezisy dokl. XIV Saratovskoi zimnei shkoly, posv. pamyati akad. P. L. Ulyanova (28 yanv.–fevr. 2008 g.), Saratovskii gos. un-t, Saratov, 2008, 199–200