@article{ZVMMF_2009_49_12_a1,
author = {G. K. Kamenev},
title = {Study of an adaptive single-phase method for approximating the multidimensional {Pareto} frontier in nonlinear systems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2103--2113},
year = {2009},
volume = {49},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a1/}
}
TY - JOUR AU - G. K. Kamenev TI - Study of an adaptive single-phase method for approximating the multidimensional Pareto frontier in nonlinear systems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 2103 EP - 2113 VL - 49 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a1/ LA - ru ID - ZVMMF_2009_49_12_a1 ER -
%0 Journal Article %A G. K. Kamenev %T Study of an adaptive single-phase method for approximating the multidimensional Pareto frontier in nonlinear systems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 2103-2113 %V 49 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a1/ %G ru %F ZVMMF_2009_49_12_a1
G. K. Kamenev. Study of an adaptive single-phase method for approximating the multidimensional Pareto frontier in nonlinear systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 12, pp. 2103-2113. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a1/
[1] Krasnoschekov P. S., Morozov V. V., Fedorov V. V., “Dekompozitsiya v zadachakh proektirovaniya”, Izv. AN. Ser. tekhn. kibernetika, 1979, no. 2, 7–17
[2] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN SSSR, 291 (1986), 25–29 | MR | Zbl
[3] Shtoier R., Mnogokriterialnaya optimizatsiya, Radio i svyaz, M., 1992 | MR
[4] Lotov A. B., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[5] Miettinen K., Nonlinear multiobjective optimization, Kluwer, Boston, 1999 | MR
[6] Lotov A. V., Bushenkov V., Kamenev G., Feasible goals method. Search for smart decisions, Computing Center RAS, M., 2001 | Zbl
[7] Lotov A. V., Bushenkov V., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer Acad. Publ., Boston, 2004 | MR | Zbl
[8] Lotov A. B., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii, Maks Press, M., 2008
[9] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007 | MR
[10] Berezkin V. E., Kamenev G. K., Lotov A. B., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi paretovoi granitsy”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2009–2023 | MR
[11] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 4:3 (1992), 105–118 | MR
[12] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom glubokikh yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl
[13] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl
[14] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR