@article{ZVMMF_2009_49_12_a0,
author = {M. I. Sumin},
title = {Parametric dual regularization for an optimal control problem with pointwise state constraints},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2083--2102},
year = {2009},
volume = {49},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a0/}
}
TY - JOUR AU - M. I. Sumin TI - Parametric dual regularization for an optimal control problem with pointwise state constraints JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 2083 EP - 2102 VL - 49 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a0/ LA - ru ID - ZVMMF_2009_49_12_a0 ER -
%0 Journal Article %A M. I. Sumin %T Parametric dual regularization for an optimal control problem with pointwise state constraints %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 2083-2102 %V 49 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a0/ %G ru %F ZVMMF_2009_49_12_a0
M. I. Sumin. Parametric dual regularization for an optimal control problem with pointwise state constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 12, pp. 2083-2102. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a0/
[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[2] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990 | MR
[3] Uzawa H., “Iterative methods for concave programming”, Studies in Linear and Nonlinear Programming, Ch. 10, Stanford Univ. Press, 1958 | Zbl
[4] Errou K. Dzh., Gurvits L., Udzava X., Issledovaniya po lineinomu i nelineinomu programmirovaniyu, Izd-vo inostr. lit., M., 1962
[5] Sumin M. I., “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[6] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[7] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR
[8] Sumin M. I., “Optimalnoe upravlenie parabolicheskimi uravneniyami: dvoistvennye chislennye metody, regulyarizatsiya”, Raspredelennye sistemy: optimizatsiya i prilozh. v ekonomike i naukakh ob okruzhayuschei srede, Sb. dokl. k Mezhdunar. konf. (Ekaterinburg, 30 maya–2 iyunya 2000 g.), Izd-vo in-ta matem. i mekhan. UrO RAN, Ekaterinburg, 2000, 66–69
[9] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | MR | Zbl
[10] Sumin M. I., “Iterativnaya regulyarizatsiya gradientnogo dvoistvennogo metoda dlya resheniya integralnogo uravneniya Fredgolma pervogo roda”, Vestn. Nizhegorodskogo un-ta. Ser. Matem., 2004, no. 1(2), 192–208
[11] Sumin M. I., “Regulyarizovannyi dvoistvennyi algoritm v zadachakh optimalnogo upravleniya dlya raspredelennykh sistem”, Vestn. Nizhegorodskogo un-ta. Ser. Matem. modelirovanie i optimalnoe upravlenie, 2006, no. 2(31), 82–101
[12] Tikhonov A. I., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl
[13] Tikhonov A. N., Goncharskii A. B., Stepanov V. V., Yagola A. G., Regulyariziruyuschie algoritmy i apriornaya informatsiya, Nauka, M., 1983 | MR
[14] Sumin M. I., “Metod vozmuschenii i dvoistvennaya regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya”, Probl. dinamich. upravleniya, Sb. nauchn. tr. f-ta VMiK MGU. Vyp. 3, Izdat. otdel f-ta VMiK MGU, M., 2008, 200–231
[15] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[16] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[17] Arutyunov A. B., Usloviya ekstremuma. Normalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl
[18] Sumin M. I., Matematicheskaya teoriya suboptimalnogo upravleniya raspredelennymi sistemami, Dis. $\dots$ dokt. fiz.-matem. nauk, Nizhegorodskii gos. un-t, Nizhnii Novgorod, 2000
[19] Sumin M. I., “Regulyarizovannyi dvoistvennyi metod resheniya nelineinoi zadachi matematicheskogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 796–816 | MR
[20] Sumin M. I., “Minimiziruyuschie posledovatelnosti, regulyarizatsiya, dvoistvennost i printsip maksimuma Pontryagina”, Mezhdunar. konf. “Differentsialnye ur-niya i topologiya”, posvyaschennaya 100-letiyu L. S. Pontryagina. Tezisy dokl. (Moskva, 17–22 iyunya 2008 g.), Izdat. otd. VMiK; MAKS Press, M., 2008, 401–402
[21] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Uch. posobie, Izd-vo Nizhegorodskogo gos. un-ta, Nizhnii Novgorod, 2009
[22] Ekeland I., “On the variational principle”, J. Math. Analys. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl
[23] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR
[24] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space. Part I: Theory”, Canadian J. Math., 38:2 (1986), 431–452 ; “Part II: Applications”, 39:2 (1987), 428–472 | MR | Zbl | MR | Zbl
[25] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proc. and Lect. Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[26] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR