Parametric dual regularization for an optimal control problem with pointwise state constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 12, pp. 2083-2102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The perturbation method is used in the dual regularization theory for a linear convex optimal control problem with a strongly convex objective functional and pointwise state constraints understood as ones in $L_2$. Primary attention is given to the qualitative properties of the dual regularization method, depending on the differential properties of the value function ($S$-function) in the optimization problem. It is shown that the convergence of the method is closely related to the Lagrange principle and the Pontryagin maximum principle. The dual regularization scheme is shown to provide a new method for proving the maximum principle in the problem with pointwise state constraints understood in $L_2$ or $C$. The regularized Lagrange principle in nondifferential form and the regularized Pontryagin maximum principle are discussed. Illustrative examples are presented.
@article{ZVMMF_2009_49_12_a0,
     author = {M. I. Sumin},
     title = {Parametric dual regularization for an optimal control problem with pointwise state constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2083--2102},
     year = {2009},
     volume = {49},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a0/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Parametric dual regularization for an optimal control problem with pointwise state constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 2083
EP  - 2102
VL  - 49
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a0/
LA  - ru
ID  - ZVMMF_2009_49_12_a0
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Parametric dual regularization for an optimal control problem with pointwise state constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 2083-2102
%V 49
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a0/
%G ru
%F ZVMMF_2009_49_12_a0
M. I. Sumin. Parametric dual regularization for an optimal control problem with pointwise state constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 12, pp. 2083-2102. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_12_a0/

[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[2] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990 | MR

[3] Uzawa H., “Iterative methods for concave programming”, Studies in Linear and Nonlinear Programming, Ch. 10, Stanford Univ. Press, 1958 | Zbl

[4] Errou K. Dzh., Gurvits L., Udzava X., Issledovaniya po lineinomu i nelineinomu programmirovaniyu, Izd-vo inostr. lit., M., 1962

[5] Sumin M. I., “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl

[6] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[7] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[8] Sumin M. I., “Optimalnoe upravlenie parabolicheskimi uravneniyami: dvoistvennye chislennye metody, regulyarizatsiya”, Raspredelennye sistemy: optimizatsiya i prilozh. v ekonomike i naukakh ob okruzhayuschei srede, Sb. dokl. k Mezhdunar. konf. (Ekaterinburg, 30 maya–2 iyunya 2000 g.), Izd-vo in-ta matem. i mekhan. UrO RAN, Ekaterinburg, 2000, 66–69

[9] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | MR | Zbl

[10] Sumin M. I., “Iterativnaya regulyarizatsiya gradientnogo dvoistvennogo metoda dlya resheniya integralnogo uravneniya Fredgolma pervogo roda”, Vestn. Nizhegorodskogo un-ta. Ser. Matem., 2004, no. 1(2), 192–208

[11] Sumin M. I., “Regulyarizovannyi dvoistvennyi algoritm v zadachakh optimalnogo upravleniya dlya raspredelennykh sistem”, Vestn. Nizhegorodskogo un-ta. Ser. Matem. modelirovanie i optimalnoe upravlenie, 2006, no. 2(31), 82–101

[12] Tikhonov A. I., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[13] Tikhonov A. N., Goncharskii A. B., Stepanov V. V., Yagola A. G., Regulyariziruyuschie algoritmy i apriornaya informatsiya, Nauka, M., 1983 | MR

[14] Sumin M. I., “Metod vozmuschenii i dvoistvennaya regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya”, Probl. dinamich. upravleniya, Sb. nauchn. tr. f-ta VMiK MGU. Vyp. 3, Izdat. otdel f-ta VMiK MGU, M., 2008, 200–231

[15] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[16] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[17] Arutyunov A. B., Usloviya ekstremuma. Normalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[18] Sumin M. I., Matematicheskaya teoriya suboptimalnogo upravleniya raspredelennymi sistemami, Dis. $\dots$ dokt. fiz.-matem. nauk, Nizhegorodskii gos. un-t, Nizhnii Novgorod, 2000

[19] Sumin M. I., “Regulyarizovannyi dvoistvennyi metod resheniya nelineinoi zadachi matematicheskogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 796–816 | MR

[20] Sumin M. I., “Minimiziruyuschie posledovatelnosti, regulyarizatsiya, dvoistvennost i printsip maksimuma Pontryagina”, Mezhdunar. konf. “Differentsialnye ur-niya i topologiya”, posvyaschennaya 100-letiyu L. S. Pontryagina. Tezisy dokl. (Moskva, 17–22 iyunya 2008 g.), Izdat. otd. VMiK; MAKS Press, M., 2008, 401–402

[21] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Uch. posobie, Izd-vo Nizhegorodskogo gos. un-ta, Nizhnii Novgorod, 2009

[22] Ekeland I., “On the variational principle”, J. Math. Analys. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl

[23] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[24] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space. Part I: Theory”, Canadian J. Math., 38:2 (1986), 431–452 ; “Part II: Applications”, 39:2 (1987), 428–472 | MR | Zbl | MR | Zbl

[25] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proc. and Lect. Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[26] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR