@article{ZVMMF_2009_49_11_a9,
author = {N. V. Filipenkov},
title = {A~method for finding smoothly varying rules in {Multidimensional} time series},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2020--2040},
year = {2009},
volume = {49},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a9/}
}
TY - JOUR AU - N. V. Filipenkov TI - A method for finding smoothly varying rules in Multidimensional time series JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 2020 EP - 2040 VL - 49 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a9/ LA - ru ID - ZVMMF_2009_49_11_a9 ER -
N. V. Filipenkov. A method for finding smoothly varying rules in Multidimensional time series. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 2020-2040. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a9/
[1] Anderson T., Statisticheskii analiz vremennykh ryadov, Mir, M., 1976
[2] Boks Dzh., Dzhenkins G., Analiz vremennykh ryadov, prognoz i upravlenie, Mir, M., 1974
[3] Engle R. F., Kroner K. F., “Multivariate simultaneous generalized ARCH”, Econometric Theory, 11 (1993), 122–150 | DOI | MR
[4] Hannan E. J., Multiple time series, John Wiley and Sons, N.Y., 1970 | MR | Zbl
[5] Lukashin Yu. P., Adaptivnye metody kratkosrochnogo prognozirovaniya vremennykh ryadov, Finansy i statistika, M., 2003 | MR
[6] Morchen F., Ultsch A., “Mining hierarchical temporal patterns in multivariate time series”, Proc. 27th Ann. German Conf. Artificial Intelligence, 2004, 17–140
[7] Agrawal R., Imielinski T., Swamiet A., “Mining association rules between sets of items in large databases”, Proc. Conf. Management of Data, Washington, USA, 1993, 207–216
[8] Agrawal R., Srikant R., “Mining sequential patterns”, Proc. 11th Internat. Conf. on Data Engng., Taiwan, 1995, 3–14
[9] Mannila H., Toivonen H., Verkamo A. I., “Discovery of frequent episodes in event sequences”, Data Mining and Knowledge Discovery, 1:3 (1997), 259–289 | DOI
[10] Das G., Lin K., Mannila H. et al., “Rule discovery from time series”, Proc. 4th Internat. Conf. Knowledge Discovery and Data Mining, New York, USA, 1998, 16–22
[11] Sayal M., Detecting time correlations in time-series data streams, HP Labs, Palo Alto, 2004
[12] Morchen F., Ultsch A., “Optimizing time series discretization for knowledge discovery”, Proc. 11th Internat. Conf. Knowledge Discovery and Data Mining, Chicago, USA, 660–665
[13] Brown R. G., Smoothing forecasting and prediction of discrete time series, Prentice-Hall, New York, 1963
[14] Trigg D. W., Leach A. G., “Exponential smoothing with an adaptive response rate”, Operat. Res. Quart., 18:1 (1967), 53–59 | DOI
[15] Engle R. F., ARCH: Selected readings, Oxford Univ. Press, Oxford, 1995
[16] Rao A. G., Shapiro A., “Adaptive smoothing using evolutionary spectra”, Management Sci., 17:3 (1970), 208–218 | DOI | Zbl
[17] Zadeh L. A., Ragazzini J. R., “An extension of Wiener's theory of prediction”, J. Appl. Phys., 21 (1950), 645–655 | DOI | MR
[18] Zadeh L. A., Ragazzini J. R., “The analysis of sampled-data systems”, Applic. and Industry (AIEE), 71 (1952), 225–234
[19] Barsegyan A. A., Kupriyanov M. S., Stepanenko V. V., Kholod I. I., Metody i modeli analiza dannykh: OLAP i Data Mining, BKhV-Peterburg, SPb., 2004
[20] Zhuravlev Yu. I., Izbrannye nauchnye trudy, Magistr, M., 1998
[21] Rudakov K. V., Algebraicheskaya teoriya universalnykh i lokalnykh ogranichenii dlya algoritmov raspoznavaniya, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs RAN, M., 1992
[22] Pudil P., Ferri F. J., Novovicova J. et al., “Floating search methods for feature selection”, Pattern Recognition Lett., 15:10 (1994), 1119–1125 | DOI
[23] Kristofides H., Teoriya grafov. Algoritmicheskii podkhod, Mir, M., 1978 | MR