Modification of two-step Monte Carlo algorithms based on the symmetry of the first step
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 2010-2019

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-step Monte Carlo algorithms are modified taking into account the symmetry (i.e., invariance) of the first step about some initial vector parameter of the modeled trajectory. In the modification, the modeling of this parameter is formally transferred to the second step of the algorithm. In the “splitting method”, this means the randomization of the initial points of auxiliary trajectories. It is shown that the randomization can be improved by applying the Bellman principle.
@article{ZVMMF_2009_49_11_a8,
     author = {G. A. Mikhailov and S. A. Rozhenko},
     title = {Modification of two-step {Monte} {Carlo} algorithms based on the symmetry of the first step},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2010--2019},
     publisher = {mathdoc},
     volume = {49},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a8/}
}
TY  - JOUR
AU  - G. A. Mikhailov
AU  - S. A. Rozhenko
TI  - Modification of two-step Monte Carlo algorithms based on the symmetry of the first step
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 2010
EP  - 2019
VL  - 49
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a8/
LA  - ru
ID  - ZVMMF_2009_49_11_a8
ER  - 
%0 Journal Article
%A G. A. Mikhailov
%A S. A. Rozhenko
%T Modification of two-step Monte Carlo algorithms based on the symmetry of the first step
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 2010-2019
%V 49
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a8/
%G ru
%F ZVMMF_2009_49_11_a8
G. A. Mikhailov; S. A. Rozhenko. Modification of two-step Monte Carlo algorithms based on the symmetry of the first step. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 2010-2019. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a8/