Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 1988-2000
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A system of two nonlinear Schrödinger equations is considered that governs the frequency doubling of femtosecond pulses propagating in an axially symmetric medium with quadratic and cubic nonlinearity. A numerical method is proposed to find soliton solutions of the problem, which is previously reformulated as an eigenvalue problem. The practically important special case of a single Schrödinger equation is discussed. Since three-dimensional solitons in the case of cubic nonlinearity are unstable with respect to small perturbations in their shape, a stabilization method is proposed based on weak modulations of the cubic nonlinearity coefficient and variations in the length of the focalizing layers. It should be emphasized that, according to the literature, stabilization was previously achieved by alternating layers with oppositely signed nonlinearities or by using nonlinear layers with strongly varying nonlinearities (of the same sign). In the case under study, it is shown that weak modulation leads to an increase in the length of the medium by more than 4 times without light wave collapse. To find the eigenfunctions and eigenvalues of the nonlinear problem, an efficient iterative process is constructed that produces three-dimensional solitons on large grids.
            
            
            
          
        
      @article{ZVMMF_2009_49_11_a6,
     author = {O. V. Matusevich and V. A. Trofimov},
     title = {Numerical method for finding {3D} solitons of the nonlinear {Schr\"odinger} equation in the axially symmetric case},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1988--2000},
     publisher = {mathdoc},
     volume = {49},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/}
}
                      
                      
                    TY - JOUR AU - O. V. Matusevich AU - V. A. Trofimov TI - Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1988 EP - 2000 VL - 49 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/ LA - ru ID - ZVMMF_2009_49_11_a6 ER -
%0 Journal Article %A O. V. Matusevich %A V. A. Trofimov %T Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1988-2000 %V 49 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/ %G ru %F ZVMMF_2009_49_11_a6
O. V. Matusevich; V. A. Trofimov. Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 1988-2000. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/
