Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 1988-2000 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of two nonlinear Schrödinger equations is considered that governs the frequency doubling of femtosecond pulses propagating in an axially symmetric medium with quadratic and cubic nonlinearity. A numerical method is proposed to find soliton solutions of the problem, which is previously reformulated as an eigenvalue problem. The practically important special case of a single Schrödinger equation is discussed. Since three-dimensional solitons in the case of cubic nonlinearity are unstable with respect to small perturbations in their shape, a stabilization method is proposed based on weak modulations of the cubic nonlinearity coefficient and variations in the length of the focalizing layers. It should be emphasized that, according to the literature, stabilization was previously achieved by alternating layers with oppositely signed nonlinearities or by using nonlinear layers with strongly varying nonlinearities (of the same sign). In the case under study, it is shown that weak modulation leads to an increase in the length of the medium by more than 4 times without light wave collapse. To find the eigenfunctions and eigenvalues of the nonlinear problem, an efficient iterative process is constructed that produces three-dimensional solitons on large grids.
@article{ZVMMF_2009_49_11_a6,
     author = {O. V. Matusevich and V. A. Trofimov},
     title = {Numerical method for finding {3D} solitons of the nonlinear {Schr\"odinger} equation in the axially symmetric case},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1988--2000},
     year = {2009},
     volume = {49},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/}
}
TY  - JOUR
AU  - O. V. Matusevich
AU  - V. A. Trofimov
TI  - Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1988
EP  - 2000
VL  - 49
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/
LA  - ru
ID  - ZVMMF_2009_49_11_a6
ER  - 
%0 Journal Article
%A O. V. Matusevich
%A V. A. Trofimov
%T Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1988-2000
%V 49
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/
%G ru
%F ZVMMF_2009_49_11_a6
O. V. Matusevich; V. A. Trofimov. Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 1988-2000. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/

[1] Buryak A. V., Kivshar Yu. S., “Spatial optical solitons governed by quadratic nonlinearity”, Opt. Lett., 19:20 (1994), 1612–1615 | DOI

[2] Buryak A. V., Trapani P. D., Skryabin D. V. et al., “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications”, Phys. Rept., 370:2 (2002), 63–235 | DOI | MR | Zbl

[3] Etrich C., Lederer F., Malomed B. A. et al., “Optical solitons in media with a quadratic nonlinearity”, Progress in Optics, 41 (2000), 483–568

[4] Brull L., Lange H., “Stationary, oscillatory and solitary wave type solution of singular nonlinear Schrödinger equations”, Math. Meth. in Appl. Sci., 8:4 (1986), 559–575 | DOI | MR

[5] Liu X., Beckwitt K., Wise F. W., “Two-dimensional optical spatiotemporal solitons in quadratic media”, Phys. Rev. E, 62:1 (2000), 1328–1340 | DOI

[6] Stegeman G., Hagan D. J., Tomer L., “$\chi^{(2)}$ cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons”, Opt. Quantum Electron., 28:12 (1996), 1691–1740 | DOI

[7] Ashihara S., Nishina J., Shimura T. et al., “Soliton compression of femtosecond pulses in quadratic media”, JOSA B, 19:10 (2002), 2505–2510 | DOI

[8] Towers I., Malomed B. A., “Stable $(2+1)$-dimentional solitons in a layered medium with sign-alternating Kerr nonlinearity”, JOSA B, 19:3 (2002), 537–543 | DOI | MR

[9] Steblina V., Kivshar Yu. S., Lisak M. et al., “Self-guided beams in a diffractive $\chi^{(2)}$ medium: variational approach”, Opt. Communs., 118 (1995), 345–352 | DOI

[10] Yang J., Malomed B. A., Kaup D. J., “Embedded solitons in second-harmonic-generating systems”, Phys. Rev. Lett., 83:10 (1999), 1958–1961 | DOI

[11] Mihalache D., Mazilu D., Malomed B. A. et al., “Stable three-dimensional optical solitons supported by competing quadratic and self-focusing cubic nonlinearities”, Phys. Rev. E, 74:4 (2006), 047601, 4 pp., ages | DOI | MR

[12] Malomed B. A., Soliton management in periodic systems, Springer, New York, 2006

[13] Sakaguchi H., Malomed B. A., “Resonant nonlinearity management for nonlinear Schrodinger solitons”, Phys. Rev. E, 70 (2004), 066613 | DOI | MR

[14] Berge L., Mezentsev V. K., Rasmussen J. J. et al., “Self-guiding light in layered nonlinear media”, Opt. Lett., 25:14 (2000), 1037–1039 | DOI

[15] Rozanov N. N., Fedorov S. V., Shatsev A. N., “Incoherent weak coupling of laser solitons”, Optics Spectroscopy, 102:1 (2007), 83–85 | DOI

[16] Babushkin I. V., Loiko H. A., Rozanov H. H., “Prostranstvennye solitonopodobnye struktury v tonkoplenochnoi sisteme s poperechnym fotonnym kristallom v tsepi obratnoi svyazi”, Optika i spektroskopiya, 102:2 (2007), 285–291

[17] Schiek R., Baek Y., Stegeman G. et al., “Interactions between one-dimensional quadratic soliton-like beams”, Optical and Quantum Electronics, 30:7–10 (1998), 861–879 | DOI

[18] Driben R., Oz Y., Malomed B. A. et al., “Mismatch management for optical and matter-wave quadratic solitons”, Phys. Rev. E, 75 (2007), 026612 | DOI | MR

[19] Saito H., Ueda M., “Dynamically stabilized bright solitons in a two-dimensional Bose–Einstein condensate”, Phys. Rev. Lett., 90 (2003), 040403 | DOI

[20] Abdullaev F. K., Caputo J. G., Kraenkel R. A., Malomed B. A., “Controlling collapse in Bose–Einstein condensates by temporal modulation of the scattering length”, Phys. Rev. A, 67 (2003), 013605 | DOI

[21] Towers I., Buryak A. V., Sammut R. A., Malomed B. A., “Stable localized vortex solitons”, Phys. Rev. E, 63:5 (2001), 055601(R) | DOI

[22] Zakharov B. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[23] Kerner B. C., Osipov V. V., Avtosolitony, Nauka, M., 1991 | Zbl

[24] Abdullaev F., Darmanyan S., Khabibullaev P., Optical solitons, Heidelberg, Berlin, 1993

[25] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[26] Ablowitz M. J., Clarkson P. A., Solitons. Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lect. Notes Ser., 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[27] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[28] Lem Dzh. L., Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR

[29] Bogoyavlenskii O. I., Oprokidyvayuschie solitony: Nelineinye integriruemye uravneniya, Nauka, M., 1991 | MR | Zbl

[30] Nayanov V. I., Mnogopolevye solitony, Fizmatlit, M., 2006 | MR | Zbl

[31] Dodd R., Eilbek Dzh., Gibbon Dzh. i dr., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[32] Miva T., Dzhimbo M., Date E., Solitony: differentsialnye uravneniya, simmetrii i beskonechnomernye algebry, MTsNMO, M., 2005

[33] Infeld E., Roulands Dzh., Nelineinye volny, solitony i khaos, Fizmatlit, M., 2005

[34] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR

[35] Kalodzhero F., Degasperis A., Spektralnye preobrazovaniya i solitony. Metody resheniya i issledovaniya nelineinykh evolyutsionnykh uravnenii, Mir, M., 1985 | MR

[36] Davydov A. C., Solitony v molekulyarnykh sistemakh, Nauk. dumka, Kiev, 1984 | MR

[37] Novokshenov V. Yu., Vvedenie v teoriyu solitonov, RKhD, Moskva–Izhevsk, 2002

[38] Radzharaman R., Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985

[39] Kivshar Yu. S., Agraval G. P., Opticheskie solitony. Ot svetovodov k fotonnym kristallam, Fizmatlit, M., 2005

[40] Akhmediev H. H., Ankevich A., Solitony. Nelineinye impulsy i puchki, Fizmatlit, M., 2003

[41] Karamzin Yu. N., Sukhorukov A. P., “Nelineinoe vzaimodeistvie difragiruyuschikh svetovykh puchkov v srede s kvadratichnoi nelineinostyu, vzaimofokusirovka puchkov i ogranichenie effektivnosti opticheskikh preobrazovatelei chastoty”, Pisma v ZhETF, 20:11 (1974), 734–739

[42] Varentsova C. A., Trofimov V. A., “O raznostnom metode nakhozhdeniya sobstvennykh mod nelineinogo uravneniya Shredingera”, Vestn. MGU. Ser. 15, 2005, no. 3, 16–22 | MR | Zbl

[43] Troflmov V. A., Varentsova S. A., “Computational method for finding of soliton solutions of a nonlinear Schrödinger equation”, Lect. Notes Math., 3401, Springer, Berlin–Heidelberg, 2005, 550–557

[44] Matusevich O. B., Trofimov B. A., “Iteratsionnyi metod nakhozhdeniya sobstvennykh funktsii sistemy dvukh uravnenii Shredingera s kombinirovannoi nelineinostyu”, Zh. vychisl. matem. i matem. fiz., 48:4 (2008), 713–724 | MR | Zbl

[45] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl

[46] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[47] Samarskii A. A., Gulin A. B., Chislennye metody, Nauka, M., 1989 | MR

[48] http://parallel.ru/cluster/leo-linpack.html

[49] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001

[50] http://www.caam.rice.edu/software/ARPACK/

[51] Malomed B. A., Mihalache D., Wise F., Torner L., “Spatiotemporal optical solitons”, J. Opt. B, 7:5 (2005), 53–72

[52] Nijhof J. H. B., Doran N. J., Forysiak W., Knox F. M., “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion”, Electron. Lett., 33:20 (1997), 1726–1727 | DOI

[53] Lakoba T., Yang J., Kaup D. J., Malomed B. A., “Conditions for stationary pulse propagation in the strong dispersion management regime”, Opt. Communs., 149:4–6 (1998), 366–375 | DOI

[54] Moll K. D., Gaeta A. L., Fibich G., “Self-similar optical wave collapse: observation of the Townes soliton”, Phys. Rev. Lett., 90:20 (2003), 203902 | DOI

[55] Montesinos G. D., Perez-Garcia V. M., “Numerical studies of stabilized Townes solitons”, Math. Comput. in Simulation, 69:5 (2005), 447–456 | DOI | MR | Zbl

[56] Montesinos G. D., Perez-Garcia V. M., Torres P. J., “Stabilization of solitons of the multidimensional nonlinear Schrödinger equation: matter-wave breathers”, Physica D, 191 (2004), 193–210 | DOI | MR | Zbl