@article{ZVMMF_2009_49_11_a6,
author = {O. V. Matusevich and V. A. Trofimov},
title = {Numerical method for finding {3D} solitons of the nonlinear {Schr\"odinger} equation in the axially symmetric case},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1988--2000},
year = {2009},
volume = {49},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/}
}
TY - JOUR AU - O. V. Matusevich AU - V. A. Trofimov TI - Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1988 EP - 2000 VL - 49 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/ LA - ru ID - ZVMMF_2009_49_11_a6 ER -
%0 Journal Article %A O. V. Matusevich %A V. A. Trofimov %T Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1988-2000 %V 49 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/ %G ru %F ZVMMF_2009_49_11_a6
O. V. Matusevich; V. A. Trofimov. Numerical method for finding 3D solitons of the nonlinear Schrödinger equation in the axially symmetric case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 1988-2000. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a6/
[1] Buryak A. V., Kivshar Yu. S., “Spatial optical solitons governed by quadratic nonlinearity”, Opt. Lett., 19:20 (1994), 1612–1615 | DOI
[2] Buryak A. V., Trapani P. D., Skryabin D. V. et al., “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications”, Phys. Rept., 370:2 (2002), 63–235 | DOI | MR | Zbl
[3] Etrich C., Lederer F., Malomed B. A. et al., “Optical solitons in media with a quadratic nonlinearity”, Progress in Optics, 41 (2000), 483–568
[4] Brull L., Lange H., “Stationary, oscillatory and solitary wave type solution of singular nonlinear Schrödinger equations”, Math. Meth. in Appl. Sci., 8:4 (1986), 559–575 | DOI | MR
[5] Liu X., Beckwitt K., Wise F. W., “Two-dimensional optical spatiotemporal solitons in quadratic media”, Phys. Rev. E, 62:1 (2000), 1328–1340 | DOI
[6] Stegeman G., Hagan D. J., Tomer L., “$\chi^{(2)}$ cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons”, Opt. Quantum Electron., 28:12 (1996), 1691–1740 | DOI
[7] Ashihara S., Nishina J., Shimura T. et al., “Soliton compression of femtosecond pulses in quadratic media”, JOSA B, 19:10 (2002), 2505–2510 | DOI
[8] Towers I., Malomed B. A., “Stable $(2+1)$-dimentional solitons in a layered medium with sign-alternating Kerr nonlinearity”, JOSA B, 19:3 (2002), 537–543 | DOI | MR
[9] Steblina V., Kivshar Yu. S., Lisak M. et al., “Self-guided beams in a diffractive $\chi^{(2)}$ medium: variational approach”, Opt. Communs., 118 (1995), 345–352 | DOI
[10] Yang J., Malomed B. A., Kaup D. J., “Embedded solitons in second-harmonic-generating systems”, Phys. Rev. Lett., 83:10 (1999), 1958–1961 | DOI
[11] Mihalache D., Mazilu D., Malomed B. A. et al., “Stable three-dimensional optical solitons supported by competing quadratic and self-focusing cubic nonlinearities”, Phys. Rev. E, 74:4 (2006), 047601, 4 pp., ages | DOI | MR
[12] Malomed B. A., Soliton management in periodic systems, Springer, New York, 2006
[13] Sakaguchi H., Malomed B. A., “Resonant nonlinearity management for nonlinear Schrodinger solitons”, Phys. Rev. E, 70 (2004), 066613 | DOI | MR
[14] Berge L., Mezentsev V. K., Rasmussen J. J. et al., “Self-guiding light in layered nonlinear media”, Opt. Lett., 25:14 (2000), 1037–1039 | DOI
[15] Rozanov N. N., Fedorov S. V., Shatsev A. N., “Incoherent weak coupling of laser solitons”, Optics Spectroscopy, 102:1 (2007), 83–85 | DOI
[16] Babushkin I. V., Loiko H. A., Rozanov H. H., “Prostranstvennye solitonopodobnye struktury v tonkoplenochnoi sisteme s poperechnym fotonnym kristallom v tsepi obratnoi svyazi”, Optika i spektroskopiya, 102:2 (2007), 285–291
[17] Schiek R., Baek Y., Stegeman G. et al., “Interactions between one-dimensional quadratic soliton-like beams”, Optical and Quantum Electronics, 30:7–10 (1998), 861–879 | DOI
[18] Driben R., Oz Y., Malomed B. A. et al., “Mismatch management for optical and matter-wave quadratic solitons”, Phys. Rev. E, 75 (2007), 026612 | DOI | MR
[19] Saito H., Ueda M., “Dynamically stabilized bright solitons in a two-dimensional Bose–Einstein condensate”, Phys. Rev. Lett., 90 (2003), 040403 | DOI
[20] Abdullaev F. K., Caputo J. G., Kraenkel R. A., Malomed B. A., “Controlling collapse in Bose–Einstein condensates by temporal modulation of the scattering length”, Phys. Rev. A, 67 (2003), 013605 | DOI
[21] Towers I., Buryak A. V., Sammut R. A., Malomed B. A., “Stable localized vortex solitons”, Phys. Rev. E, 63:5 (2001), 055601(R) | DOI
[22] Zakharov B. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR
[23] Kerner B. C., Osipov V. V., Avtosolitony, Nauka, M., 1991 | Zbl
[24] Abdullaev F., Darmanyan S., Khabibullaev P., Optical solitons, Heidelberg, Berlin, 1993
[25] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[26] Ablowitz M. J., Clarkson P. A., Solitons. Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lect. Notes Ser., 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[27] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[28] Lem Dzh. L., Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR
[29] Bogoyavlenskii O. I., Oprokidyvayuschie solitony: Nelineinye integriruemye uravneniya, Nauka, M., 1991 | MR | Zbl
[30] Nayanov V. I., Mnogopolevye solitony, Fizmatlit, M., 2006 | MR | Zbl
[31] Dodd R., Eilbek Dzh., Gibbon Dzh. i dr., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR
[32] Miva T., Dzhimbo M., Date E., Solitony: differentsialnye uravneniya, simmetrii i beskonechnomernye algebry, MTsNMO, M., 2005
[33] Infeld E., Roulands Dzh., Nelineinye volny, solitony i khaos, Fizmatlit, M., 2005
[34] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR
[35] Kalodzhero F., Degasperis A., Spektralnye preobrazovaniya i solitony. Metody resheniya i issledovaniya nelineinykh evolyutsionnykh uravnenii, Mir, M., 1985 | MR
[36] Davydov A. C., Solitony v molekulyarnykh sistemakh, Nauk. dumka, Kiev, 1984 | MR
[37] Novokshenov V. Yu., Vvedenie v teoriyu solitonov, RKhD, Moskva–Izhevsk, 2002
[38] Radzharaman R., Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985
[39] Kivshar Yu. S., Agraval G. P., Opticheskie solitony. Ot svetovodov k fotonnym kristallam, Fizmatlit, M., 2005
[40] Akhmediev H. H., Ankevich A., Solitony. Nelineinye impulsy i puchki, Fizmatlit, M., 2003
[41] Karamzin Yu. N., Sukhorukov A. P., “Nelineinoe vzaimodeistvie difragiruyuschikh svetovykh puchkov v srede s kvadratichnoi nelineinostyu, vzaimofokusirovka puchkov i ogranichenie effektivnosti opticheskikh preobrazovatelei chastoty”, Pisma v ZhETF, 20:11 (1974), 734–739
[42] Varentsova C. A., Trofimov V. A., “O raznostnom metode nakhozhdeniya sobstvennykh mod nelineinogo uravneniya Shredingera”, Vestn. MGU. Ser. 15, 2005, no. 3, 16–22 | MR | Zbl
[43] Troflmov V. A., Varentsova S. A., “Computational method for finding of soliton solutions of a nonlinear Schrödinger equation”, Lect. Notes Math., 3401, Springer, Berlin–Heidelberg, 2005, 550–557
[44] Matusevich O. B., Trofimov B. A., “Iteratsionnyi metod nakhozhdeniya sobstvennykh funktsii sistemy dvukh uravnenii Shredingera s kombinirovannoi nelineinostyu”, Zh. vychisl. matem. i matem. fiz., 48:4 (2008), 713–724 | MR | Zbl
[45] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl
[46] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999
[47] Samarskii A. A., Gulin A. B., Chislennye metody, Nauka, M., 1989 | MR
[48] http://parallel.ru/cluster/leo-linpack.html
[49] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001
[50] http://www.caam.rice.edu/software/ARPACK/
[51] Malomed B. A., Mihalache D., Wise F., Torner L., “Spatiotemporal optical solitons”, J. Opt. B, 7:5 (2005), 53–72
[52] Nijhof J. H. B., Doran N. J., Forysiak W., Knox F. M., “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion”, Electron. Lett., 33:20 (1997), 1726–1727 | DOI
[53] Lakoba T., Yang J., Kaup D. J., Malomed B. A., “Conditions for stationary pulse propagation in the strong dispersion management regime”, Opt. Communs., 149:4–6 (1998), 366–375 | DOI
[54] Moll K. D., Gaeta A. L., Fibich G., “Self-similar optical wave collapse: observation of the Townes soliton”, Phys. Rev. Lett., 90:20 (2003), 203902 | DOI
[55] Montesinos G. D., Perez-Garcia V. M., “Numerical studies of stabilized Townes solitons”, Math. Comput. in Simulation, 69:5 (2005), 447–456 | DOI | MR | Zbl
[56] Montesinos G. D., Perez-Garcia V. M., Torres P. J., “Stabilization of solitons of the multidimensional nonlinear Schrödinger equation: matter-wave breathers”, Physica D, 191 (2004), 193–210 | DOI | MR | Zbl