@article{ZVMMF_2009_49_11_a12,
author = {D. P. Vetrov and D. A. Kropotov and N. O. Ptashko},
title = {An efficient method for feature selection in linear regression based on an extended {Akaike's} information criterion},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2066--2080},
year = {2009},
volume = {49},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a12/}
}
TY - JOUR AU - D. P. Vetrov AU - D. A. Kropotov AU - N. O. Ptashko TI - An efficient method for feature selection in linear regression based on an extended Akaike's information criterion JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 2066 EP - 2080 VL - 49 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a12/ LA - ru ID - ZVMMF_2009_49_11_a12 ER -
%0 Journal Article %A D. P. Vetrov %A D. A. Kropotov %A N. O. Ptashko %T An efficient method for feature selection in linear regression based on an extended Akaike's information criterion %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 2066-2080 %V 49 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a12/ %G ru %F ZVMMF_2009_49_11_a12
D. P. Vetrov; D. A. Kropotov; N. O. Ptashko. An efficient method for feature selection in linear regression based on an extended Akaike's information criterion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 2066-2080. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a12/
[1] Tipping M. E., “The relevance vector machine”, Advances Neural Information Processing Systems, 12 (2000), 652–658
[2] MacKay D. J. C., “The evidence framework applied to classification networks”, Neural Comput., 4 (1992), 720–736 | DOI
[3] Tibshirani R., “Regression shrinkage and selection via the lasso”, J. Roy. Stat. Soc., 58 (1996), 267–288 | MR | Zbl
[4] Figueiredo M., “Adaptive sparseness for supervised learning”, IEEE Trans. Pattern Analys. Mach. Intelligence, 25 (2003), 1150–1159 | DOI
[5] Williams P. M., “Bayesian regularization and pruning using a laplace prior”, Neural Comput., 7 (1995), 117–143 | DOI
[6] Cawley G. C., Talbot N. L. C., Girolami M., “Sparse multinomial logistic regression via bayesian $L1$ regularisation”, Advances Neural Informat. Processing Systems, 19 (2007), 209–216
[7] Schwarz G., “Estimating the dimension of a model”, Ann. Statistics, 6 (1978), 461–464 | DOI | MR | Zbl
[8] Bishop C. M., Pattern recognition and machine learning, Springer, New York, 2006 | MR
[9] Akaike H., “A new look at statistical model identification”, IEEE Trans. Automatic Control, 25 (1974), 461–464 | MR
[10] Shiryaev A. N., Veroyatnost, Nauka, M., 1979 | MR
[11] Borovkov A. A., Matematicheskaya statistika, Fizmatlit, M., 2007 | Zbl
[12] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR
[13] Spiegelhalter D., Best N., Carlin B., van der Linde A., “Bayesian measures of model complexity and fit”, J. Roy. Statist. Soc., 64 (2002), 583–640 | DOI | MR
[14] Faul A. C., Tipping M. E., “Analysis of sparse bayesian learning”, Advances Neural Informat. Processing Systems, 14 (2002), 383–389
[15] Tipping M. E., “Sparse bayesian learning and the relevance vector machines”, J. Mach. Learning Res., 1 (2001), 211–244 | DOI | MR | Zbl
[16] Kropotov D. A., Vetrov D. P., “On one method of non-diagonal regularization in sparse bayesian learning”, Proc. 24th Internat. Conf. Mach. Learning, Omnipress, Corvalis, 2007, 457–464
[17] Qi Y., Minka T., Picard R., Ghahramani Z., “Predictive automatic relevance determination by expectation propagation”, Proc. 21st Internat. Conf. Mach. Learning, Omnipress, Banff, 2004, 671–678
[18] Dietterich T. G., “Approximate statistical tests for comparing supervised classification learning algorithms”, Neural Comput., 10 (1998), 1895–1924 | DOI