An efficient method for feature selection in linear regression based on an extended Akaike's information criterion
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 2066-2080
Voir la notice de l'article provenant de la source Math-Net.Ru
A method for feature selection in linear regression based on an extension of Akaike's information criterion is proposed. The use of classical Akaike's information criterion (AIC) for feature selection assumes the exhaustive search through all the subsets of features, which has unreasonably high computational and time cost. A new information criterion is proposed that is a continuous extension of AIC. As a result, the feature selection problem is reduced to a smooth optimization problem. An efficient procedure for solving this problem is derived. Experiments show that the proposed method enables one to efficiently select features in linear regression. In the experiments, the proposed procedure is compared with the relevance vector machine, which is a feature selection method based on Bayesian approach. It is shown that both procedures yield similar results. The main distinction of the proposed method is that certain regularization coefficients are identical zeros. This makes it possible to avoid the underfitting effect, which is a characteristic feature of the relevance vector machine. A special case (the so-called nondiagonal regularization) is considered in which both methods are identical.
@article{ZVMMF_2009_49_11_a12,
author = {D. P. Vetrov and D. A. Kropotov and N. O. Ptashko},
title = {An efficient method for feature selection in linear regression based on an extended {Akaike's} information criterion},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2066--2080},
publisher = {mathdoc},
volume = {49},
number = {11},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a12/}
}
TY - JOUR AU - D. P. Vetrov AU - D. A. Kropotov AU - N. O. Ptashko TI - An efficient method for feature selection in linear regression based on an extended Akaike's information criterion JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 2066 EP - 2080 VL - 49 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a12/ LA - ru ID - ZVMMF_2009_49_11_a12 ER -
%0 Journal Article %A D. P. Vetrov %A D. A. Kropotov %A N. O. Ptashko %T An efficient method for feature selection in linear regression based on an extended Akaike's information criterion %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 2066-2080 %V 49 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a12/ %G ru %F ZVMMF_2009_49_11_a12
D. P. Vetrov; D. A. Kropotov; N. O. Ptashko. An efficient method for feature selection in linear regression based on an extended Akaike's information criterion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 2066-2080. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a12/