@article{ZVMMF_2009_49_11_a0,
author = {A. V. Antipov and A. S. Bratus'},
title = {Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a~heterogeneous tumor},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1907--1919},
year = {2009},
volume = {49},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a0/}
}
TY - JOUR AU - A. V. Antipov AU - A. S. Bratus' TI - Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1907 EP - 1919 VL - 49 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a0/ LA - ru ID - ZVMMF_2009_49_11_a0 ER -
%0 Journal Article %A A. V. Antipov %A A. S. Bratus' %T Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1907-1919 %V 49 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a0/ %G ru %F ZVMMF_2009_49_11_a0
A. V. Antipov; A. S. Bratus'. Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 1907-1919. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a0/
[1] Costa M. I. S., Boldrini J. L., Bassanezi R. C., “Optimal chemical control of populations developing drug resistance”, IMA J. Math. Appl. Med. Biol., 9 (1992), 215–226 | DOI | MR | Zbl
[2] Costa M. I. S., Boldrini J. L., Bassanezi R. C., “Drug kinetics and drug resistance in optimal chemotherapy”, Math. Biosciences, 125 (1995), 191–209 | DOI | Zbl
[3] Costa M. L. S., Boldrini J. L., Bassanezi R. C., “Chemotherapeutic treatments involving drug resistance and level of normal cells as a criterion of toxicity”, Math. Biosciences, 125 (1995), 211–228 | DOI | Zbl
[4] Aranjo R. P., Mcelwain D. L., “A history of the study of solid tumour growth: the contribution of mathematical modeling”, Bull. Math. Biol., 66 (2004), 1039–1091 | DOI | MR
[5] Guiot C., Degiorgis P. G., Delsanto P. P. et al., “Does tumour growth follow a “universal low””, J. Theor. Biol., 225 (2003), 147–151 | DOI | MR
[6] Byrne H. M., “A weakly nonlinear analysis of a model of avascular solid tumour growth”, J. Math. Biol., 39 (1999), 151–181 | DOI | MR
[7] Murray J. D., Mathematical biology. II: Spatial models and biomedical applications, Springer, Berlin, 2003 | MR
[8] Matzavinos A., Chaplain M., Kuznetsov V., “Mathematical modeling of the spatiotemporal response of cytotoxic T-lymphocytes to a solid tumour”, Math. Medicine and Biol., 21 (2004), 1–34 | DOI | Zbl
[9] Bratus A. C., Chumerina E. C., “Sintez optimalnogo upravleniya v zadache vybora lekarstvennogo vozdeistviya na rastuschuyu opukhol”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 946–966 | Zbl
[10] Kirschner D., Panetta J. C., “Modelling immunotherapy of the tumour-immune interaction”, J. Math. Biol., 37 (1998), 235–252 | DOI | Zbl
[11] Burden T. N., Ernstberger J., Fister K. R., “Optimal control applied to immunotherapy”, J. Discrete and Continuous Dynamical Systems. Ser. B, 4 (2004), 135–146 | MR | Zbl
[12] Moiseev H. H., Elementy teorii optimalnykh sistem, Nauka, M., 1975 | MR