Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 1907-1919 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of tumor cell population dynamics is considered. The tumor is assumed to consist of cells of two types: amenable and resistant to chemotherapeutic treatment. It is assumed that the growth of the cell populations of both types is governed by logistic equations. The effect of a chemotherapeutic drug on the tumor is specified by a therapy function. Two types of therapy functions are considered: a monotonically increasing function and a nonmonotone one with a threshold. In the former case, the effect of a drug on the tumor is stronger at a higher drug concentration. In the latter case, a threshold drug concentration exists above which the effect of the therapy reduces. The case when the total drug amount is subject to an integral constraint is also studied. A similar problem was previously studied in the case of a linear therapy function with no constraint imposed on the drug amount. By applying the Pontryagin maximum principle, necessary optimality conditions are found, which are used to draw important conclusions about the character of the optimal therapy strategy. The optimal control problem of minimizing the total number of tumor cells is solved numerically in the case of a monotone or threshold therapy function with allowance for the integral constraint on the drug amount.
@article{ZVMMF_2009_49_11_a0,
     author = {A. V. Antipov and A. S. Bratus'},
     title = {Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a~heterogeneous tumor},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1907--1919},
     year = {2009},
     volume = {49},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a0/}
}
TY  - JOUR
AU  - A. V. Antipov
AU  - A. S. Bratus'
TI  - Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1907
EP  - 1919
VL  - 49
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a0/
LA  - ru
ID  - ZVMMF_2009_49_11_a0
ER  - 
%0 Journal Article
%A A. V. Antipov
%A A. S. Bratus'
%T Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1907-1919
%V 49
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a0/
%G ru
%F ZVMMF_2009_49_11_a0
A. V. Antipov; A. S. Bratus'. Mathematical model of optimal chemotherapy strategy with allowance for cell population dynamics in a heterogeneous tumor. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 11, pp. 1907-1919. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_11_a0/

[1] Costa M. I. S., Boldrini J. L., Bassanezi R. C., “Optimal chemical control of populations developing drug resistance”, IMA J. Math. Appl. Med. Biol., 9 (1992), 215–226 | DOI | MR | Zbl

[2] Costa M. I. S., Boldrini J. L., Bassanezi R. C., “Drug kinetics and drug resistance in optimal chemotherapy”, Math. Biosciences, 125 (1995), 191–209 | DOI | Zbl

[3] Costa M. L. S., Boldrini J. L., Bassanezi R. C., “Chemotherapeutic treatments involving drug resistance and level of normal cells as a criterion of toxicity”, Math. Biosciences, 125 (1995), 211–228 | DOI | Zbl

[4] Aranjo R. P., Mcelwain D. L., “A history of the study of solid tumour growth: the contribution of mathematical modeling”, Bull. Math. Biol., 66 (2004), 1039–1091 | DOI | MR

[5] Guiot C., Degiorgis P. G., Delsanto P. P. et al., “Does tumour growth follow a “universal low””, J. Theor. Biol., 225 (2003), 147–151 | DOI | MR

[6] Byrne H. M., “A weakly nonlinear analysis of a model of avascular solid tumour growth”, J. Math. Biol., 39 (1999), 151–181 | DOI | MR

[7] Murray J. D., Mathematical biology. II: Spatial models and biomedical applications, Springer, Berlin, 2003 | MR

[8] Matzavinos A., Chaplain M., Kuznetsov V., “Mathematical modeling of the spatiotemporal response of cytotoxic T-lymphocytes to a solid tumour”, Math. Medicine and Biol., 21 (2004), 1–34 | DOI | Zbl

[9] Bratus A. C., Chumerina E. C., “Sintez optimalnogo upravleniya v zadache vybora lekarstvennogo vozdeistviya na rastuschuyu opukhol”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 946–966 | Zbl

[10] Kirschner D., Panetta J. C., “Modelling immunotherapy of the tumour-immune interaction”, J. Math. Biol., 37 (1998), 235–252 | DOI | Zbl

[11] Burden T. N., Ernstberger J., Fister K. R., “Optimal control applied to immunotherapy”, J. Discrete and Continuous Dynamical Systems. Ser. B, 4 (2004), 135–146 | MR | Zbl

[12] Moiseev H. H., Elementy teorii optimalnykh sistem, Nauka, M., 1975 | MR