Semismooth Newton method for quadratic programs with bound constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1785-1795 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Convex quadratic programs with bound constraints are proposed to be solved by applying a semismooth Newton method to the corresponding variational inequality. Computational experiments demonstrate that, for strongly convex problems, this approach can be considerably more efficient than more traditional approaches.
@article{ZVMMF_2009_49_10_a5,
     author = {A. N. Daryina and A. F. Izmailov},
     title = {Semismooth {Newton} method for quadratic programs with bound constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1785--1795},
     year = {2009},
     volume = {49},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a5/}
}
TY  - JOUR
AU  - A. N. Daryina
AU  - A. F. Izmailov
TI  - Semismooth Newton method for quadratic programs with bound constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1785
EP  - 1795
VL  - 49
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a5/
LA  - ru
ID  - ZVMMF_2009_49_10_a5
ER  - 
%0 Journal Article
%A A. N. Daryina
%A A. F. Izmailov
%T Semismooth Newton method for quadratic programs with bound constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1785-1795
%V 49
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a5/
%G ru
%F ZVMMF_2009_49_10_a5
A. N. Daryina; A. F. Izmailov. Semismooth Newton method for quadratic programs with bound constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1785-1795. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a5/

[1] Moré J., Toraldo G., “Algorithms for bound constrained quadratic programming problems”, Numer. Math., 55 (1989), 377–400 | DOI | MR | Zbl

[2] Moré J., Toraldo G., “On the solution of large quadratic programming problems with bound constraints”, SIAM J. Optimizat., 1 (1991), 93–113 | DOI | MR | Zbl

[3] Friedlander A., Martinez J. M., “On the maximization of a concave quadratic function with box constraints”, SIAM J. Optimizat., 4 (1994), 204–212 | MR

[4] Dostál Z., Schöberl J., “Minimizing quadratic function subject to bound constraints with the rate of convergence and finite termination”, Comput. Optimizat. Appl., 30 (2005), 23–43 | DOI | MR | Zbl

[5] Izmailov A. F., Solodov M. B., Chislennye metody optimizatsii, Fizmatlit, M., 2003 | MR

[6] Dai Y.-H., Fletcher R., “Projected Barzilai-Borwein methods for large-scale boxconstrained quadratic programming”, Numer. Math., 100 (2005), 21–47 | DOI | MR | Zbl

[7] Ito K., Kunisch K., “On a semi-smooth Newton method and its globalization”, Math. Program., 118 (2009), 347–370 | DOI | MR | Zbl

[8] Fischer A., Kanzow C., “On finite termination of an iterative method for linear complementarity problems”, Math. Program., 74 (1996), 279–292 | MR | Zbl

[9] Izmailov A. F., “Polugladkii metod Nyutona dlya zadachi kvadratichnogo programmirovaniya”, Teoreticheskie i prikl. zadachi nelineinogo analiza, VTs RAN, M., 2007, 62–71 | MR

[10] Darina A. N., Izmailov A. F., Solodov M. V., “Smeshannye komplementarnye zadachi: regulyarnost, otsenki rasstoyaniya do resheniya i nyutonovskie metody”, Zh. vychisl. matem. i matem. fiz., 44:1 (2004), 51–69 | MR

[11] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[12] Billups S. C., Algorithms for complementarity problems and generalized equations, PhD thesis, Madison, 1995

[13] Nocedal J., Wright S. J., Numerical optimization, Springer, New York, etc., 2000 | MR