@article{ZVMMF_2009_49_10_a5,
author = {A. N. Daryina and A. F. Izmailov},
title = {Semismooth {Newton} method for quadratic programs with bound constraints},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1785--1795},
year = {2009},
volume = {49},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a5/}
}
TY - JOUR AU - A. N. Daryina AU - A. F. Izmailov TI - Semismooth Newton method for quadratic programs with bound constraints JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1785 EP - 1795 VL - 49 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a5/ LA - ru ID - ZVMMF_2009_49_10_a5 ER -
%0 Journal Article %A A. N. Daryina %A A. F. Izmailov %T Semismooth Newton method for quadratic programs with bound constraints %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1785-1795 %V 49 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a5/ %G ru %F ZVMMF_2009_49_10_a5
A. N. Daryina; A. F. Izmailov. Semismooth Newton method for quadratic programs with bound constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1785-1795. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a5/
[1] Moré J., Toraldo G., “Algorithms for bound constrained quadratic programming problems”, Numer. Math., 55 (1989), 377–400 | DOI | MR | Zbl
[2] Moré J., Toraldo G., “On the solution of large quadratic programming problems with bound constraints”, SIAM J. Optimizat., 1 (1991), 93–113 | DOI | MR | Zbl
[3] Friedlander A., Martinez J. M., “On the maximization of a concave quadratic function with box constraints”, SIAM J. Optimizat., 4 (1994), 204–212 | MR
[4] Dostál Z., Schöberl J., “Minimizing quadratic function subject to bound constraints with the rate of convergence and finite termination”, Comput. Optimizat. Appl., 30 (2005), 23–43 | DOI | MR | Zbl
[5] Izmailov A. F., Solodov M. B., Chislennye metody optimizatsii, Fizmatlit, M., 2003 | MR
[6] Dai Y.-H., Fletcher R., “Projected Barzilai-Borwein methods for large-scale boxconstrained quadratic programming”, Numer. Math., 100 (2005), 21–47 | DOI | MR | Zbl
[7] Ito K., Kunisch K., “On a semi-smooth Newton method and its globalization”, Math. Program., 118 (2009), 347–370 | DOI | MR | Zbl
[8] Fischer A., Kanzow C., “On finite termination of an iterative method for linear complementarity problems”, Math. Program., 74 (1996), 279–292 | MR | Zbl
[9] Izmailov A. F., “Polugladkii metod Nyutona dlya zadachi kvadratichnogo programmirovaniya”, Teoreticheskie i prikl. zadachi nelineinogo analiza, VTs RAN, M., 2007, 62–71 | MR
[10] Darina A. N., Izmailov A. F., Solodov M. V., “Smeshannye komplementarnye zadachi: regulyarnost, otsenki rasstoyaniya do resheniya i nyutonovskie metody”, Zh. vychisl. matem. i matem. fiz., 44:1 (2004), 51–69 | MR
[11] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[12] Billups S. C., Algorithms for complementarity problems and generalized equations, PhD thesis, Madison, 1995
[13] Nocedal J., Wright S. J., Numerical optimization, Springer, New York, etc., 2000 | MR