State observability of elastic vibrations in distributed and lumped parameter systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1779-1784 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

State observation problems for the vibrations in a distributed and lumped parameter system are solved. The vibrations of the distributed parameter object are described by boundary value problems with Dirichlet boundary conditions, while the lumped parameter object is described by a secondorder ordinary differential equation.
@article{ZVMMF_2009_49_10_a4,
     author = {A. I. Egorov and L. N. Znamenskaya},
     title = {State observability of elastic vibrations in distributed and lumped parameter systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1779--1784},
     year = {2009},
     volume = {49},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a4/}
}
TY  - JOUR
AU  - A. I. Egorov
AU  - L. N. Znamenskaya
TI  - State observability of elastic vibrations in distributed and lumped parameter systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1779
EP  - 1784
VL  - 49
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a4/
LA  - ru
ID  - ZVMMF_2009_49_10_a4
ER  - 
%0 Journal Article
%A A. I. Egorov
%A L. N. Znamenskaya
%T State observability of elastic vibrations in distributed and lumped parameter systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1779-1784
%V 49
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a4/
%G ru
%F ZVMMF_2009_49_10_a4
A. I. Egorov; L. N. Znamenskaya. State observability of elastic vibrations in distributed and lumped parameter systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1779-1784. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a4/

[1] Krasnopolskaya T. S., Shvets A. Yu., Regulyarnaya i khaoticheskaya dinamika sistem s ogranichennym vozbuzhdeniem, NITs “Regulyarnaya i khaoticheskaya dinamika”. In-t kompyuternykh issledovanii, M.-Izhevsk, 2008

[2] Alifov A. A., Frolov K. V., Vzaimodeistvie nelineinykh kolebatelnykh sistem s istochnikami energii, Nauka, M., 1989

[3] Bautin H. H., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990 | Zbl

[4] Ganiev R. F., Kovalchuk P. S., Dinamika sistem tverdykh i uprugikh tel, Mashinostroenie, M., 1980

[5] Egorov A. I., Znamenskaya L. N., “O granichnoi nablyudaemosti uprugikh kolebanii svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Avtomatika i telemekhan., 2007, no. 2, 95–102 | MR | Zbl

[6] Znamenskaya L. N., Potapova Z. E., “Zadacha granichnoi nablyudaemosti uprugikh kolebanii, opisyvaemykh sistemoi telegrafnykh uravnenii”, Avtomatika i telemekhan., 2007, no. 2, 103–112 | MR | Zbl

[7] Znamenskaya L. N., “Nablyudaemost uprugikh kolebanii sistem s raspredelennymi i sosredotochennymi parametrami po dvum granitsam”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 944–958

[8] Egorov A. M., Znamenskaya L. N., “Ob upravlyaemosti kolebanii sistemy svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Zh. vychisl. matem. i matem. fiz., 46:6 (2006), 1002–1018 | MR