@article{ZVMMF_2009_49_10_a2,
author = {A. I. Kozlov and M. Yu. Kokurin},
title = {Gradient projection method for stable approximation of quasisolutions to irregular nonlinear operator equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1757--1764},
year = {2009},
volume = {49},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a2/}
}
TY - JOUR AU - A. I. Kozlov AU - M. Yu. Kokurin TI - Gradient projection method for stable approximation of quasisolutions to irregular nonlinear operator equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1757 EP - 1764 VL - 49 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a2/ LA - ru ID - ZVMMF_2009_49_10_a2 ER -
%0 Journal Article %A A. I. Kozlov %A M. Yu. Kokurin %T Gradient projection method for stable approximation of quasisolutions to irregular nonlinear operator equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1757-1764 %V 49 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a2/ %G ru %F ZVMMF_2009_49_10_a2
A. I. Kozlov; M. Yu. Kokurin. Gradient projection method for stable approximation of quasisolutions to irregular nonlinear operator equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1757-1764. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a2/
[1] Vasilev F. P., Metody resheniya ekstremalnykh zadach. Zadachi minimizatsii v funktsionalnykh prostranstvakh, regulyarizatsiya, approksimatsiya, Nauka, M., 1981 | MR
[2] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya neregulyarnykh uravnenii, LENAND, M., 2006
[3] Bakushinskii A. B., Goncharskii A. B., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR
[4] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa (teoriya i prilozheniya), RKhD, M.-Izhevsk, 2005 | MR
[5] Vakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002
[6] Bakushinsky A., Kokurin M., Iterative methods for approximate solution of inverse problems, Springer, Dordrecht, 2005 | MR
[7] Kozlov A. I., “Gradientno-proektsionnyi metod dlya nakhozhdeniya kvazireshenii nelineinykh neregulyarnykh operatornykh uravnenii”, Vychisl. metody i programmirovanie, 4 (2003), 117–125