Continuous compression waves in the two-dimensional Riemann problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1853-1859 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The interaction between a plane shock wave in a plate and a wedge is considered within the framework of the nondissipative compressible fluid dynamic equations. The wedge is filled with a material that may differ from that of the plate. Based on the numerical solution of the original equations, self-similar solutions are obtained for several versions of the problem with an iron plate and a wedge filled with aluminum and for the interaction of a shock wave in air with a rigid wedge. The behavior of the solids at high pressures is approximately described by a two-term equation of state. In all the problems, a two-dimensional continuous compression wave develops as a wave reflected from the wedge or as a wave adjacent to the reflected shock. In contrast to a gradient catastrophe typical of one-dimensional continuous compression waves, the spatial gradient of a two-dimensional compression wave decreases over time due to the self-similarity of the solution. It is conjectured that a phenomenon opposite to the gradient catastrophe can occur in an actual flow with dissipative processes like viscosity and heat conduction. Specifically, an initial shock wave is transformed over time into a continuous compression wave of the same amplitude.
@article{ZVMMF_2009_49_10_a10,
     author = {A. A. Charakhch'yan},
     title = {Continuous compression waves in the two-dimensional {Riemann} problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1853--1859},
     year = {2009},
     volume = {49},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a10/}
}
TY  - JOUR
AU  - A. A. Charakhch'yan
TI  - Continuous compression waves in the two-dimensional Riemann problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1853
EP  - 1859
VL  - 49
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a10/
LA  - ru
ID  - ZVMMF_2009_49_10_a10
ER  - 
%0 Journal Article
%A A. A. Charakhch'yan
%T Continuous compression waves in the two-dimensional Riemann problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1853-1859
%V 49
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a10/
%G ru
%F ZVMMF_2009_49_10_a10
A. A. Charakhch'yan. Continuous compression waves in the two-dimensional Riemann problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 10, pp. 1853-1859. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_10_a10/

[1] Rozhdestvenskii B. L., Yanenko H. H., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978

[2] Lomonosov I. V., Fortov V. E., Frolova A. A. i dr., “Ob odnom vozmozhnom podkhode k polucheniyu iskusstvennykh almazov”, Dokl. RAN, 360:2 (1998), 199–201

[3] Dontsov V. E., “Vzaimodeistvie udarnoi volny so sfericheskim gazozhidkostnym klasterom”, Prikl. mekhan. i tekhn. fiz., 45:1 (2004), 3–11 | MR

[4] Godunov S. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[5] Sheng W., Zhang T., The Riemann problem for transportation equations in gas dynamics, Mem. Amer. Math. Soc., 137, no 654, 1999 | MR

[6] Ternovoi V. Ya., “Strueobrazovanie pri szhatii plazmy v ostrougolnoi geometrii”, Prikl. mekhan. i tekhn. fiz., 5 (1984), 68–73

[7] Milyavskii V. V., Fortov V. E., Frolova A. A. i dr., “Raschet udarnogo szhatiya poristykh sred v konicheskikh tverdotelnykh mishenyakh s vykhodnym otverstiem”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 913–931 | MR

[8] Hirt C. W., Amsden A. A., Cook J. L., “An arbitrary lagrangian-eulerian computing method for all flow speeds”, J. Comput. Phys., 14:3 (1974), 227–253 | DOI | MR | Zbl

[9] Van Leer B., “A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI

[10] Rodionov A. B., “Povyshenie poryadka approksimatsii skhemy C. K. Godunova”, Zh. vychisl. matem. i matem. fiz., 27:12 (1987), 1853–1860 | MR | Zbl

[11] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR