Some aspects of grid generation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1638-1658 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New results concerning the development of a universal method for grid generation based on the numerical solution of the inverted Beltrami and diffusion equations with respect to the monitor metric are obtained. In order to build monitor metrics, layer-type functions are used. Algorithms for generating smoothly matched block grids are proposed. Examples of two-and three-dimensional grids for the tokamak edge region, for calculation of a passive impurity in the atmosphere, and for the numerical solution of two-dimensional singularly perturbed problems are presented.
@article{ZVMMF_2008_48_9_a9,
     author = {I. A. Vaseva and V. D. Liseikin and Yu. V. Likhanova and Yu. N. Morokov},
     title = {Some aspects of grid generation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1638--1658},
     year = {2008},
     volume = {48},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a9/}
}
TY  - JOUR
AU  - I. A. Vaseva
AU  - V. D. Liseikin
AU  - Yu. V. Likhanova
AU  - Yu. N. Morokov
TI  - Some aspects of grid generation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1638
EP  - 1658
VL  - 48
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a9/
LA  - ru
ID  - ZVMMF_2008_48_9_a9
ER  - 
%0 Journal Article
%A I. A. Vaseva
%A V. D. Liseikin
%A Yu. V. Likhanova
%A Yu. N. Morokov
%T Some aspects of grid generation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1638-1658
%V 48
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a9/
%G ru
%F ZVMMF_2008_48_9_a9
I. A. Vaseva; V. D. Liseikin; Yu. V. Likhanova; Yu. N. Morokov. Some aspects of grid generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1638-1658. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a9/

[1] Liseikin V. D., A computational differential geometry approach to grid generation, Springer, Berlin, 2007 | MR | Zbl

[2] Shokin Yu. I., Liseikin V. D., Lebedev A. C. i dr., Metody rimanovoi geometrii v zadachakh postroeniya raznostnykh setok, Nauka, Novosibirsk, 2005

[3] Liseikin V. D., Grid generation methods, Springer, Berlin, 1999 | MR | Zbl

[4] Godunov S. K., Prokopov G. P., “O raschetakh konformnykh otobrazhenii i postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 7:5 (1967), 1031 | MR | Zbl

[5] Thompson J. F., Soni B. K., Hauser J., “A reflection on grid generation in the 90s: trends, needs influences”, Numer. Grid Generation in CFD, v. 1, Mississippi State Univ., 1996, 1029

[6] Raveche H. J., Lawrie D. H., Despain A. M., A national computing initiative, SIAM, Philadelphia, 1987

[7] Knupp P., Steinberg S., Fundamentals of grid generation, CRC Press, Boca Raton, 1993 | MR

[8] Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical grid generation. Foundations and applic, Elsevier Science Publ., New York, 1985 | MR | Zbl

[9] Warsi Z. U. A., Tensors and differential geometry applied to analytical and numerical coordinate generation., MSSU-EIRS-81-1, Aerospace Engng., Mississippi State Univ., Starkville, 1981

[10] Yanenko H. H., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[11] Liseikin V. D., “O postroenii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1670–1683 | MR

[12] Danaev N. T.,Liseikin V. D., Yanenko H. H., “O chislennom raschete dvizheniya vyazkogo gaza vokrug tela vrascheniya na podvizhnoi setke”, Chisl. metody mekhan. sploshnoi sredy. Novosibirsk: ITPM SO AN SSSR, 11:1 (1980), 51

[13] Charakch'yan A.Ȧ., Ivanenko S. A., “A variational form of the Winslow grid generator”, J. Comput. Phys., 136 (1997), 385 | DOI | MR

[14] Azarenok B. N., “Variational barrier method of adaptive grid generation in hyperbolic problems of gas dynamics”, SIAM J. Numer. Analys., 40:2 (2002), 651 | DOI | MR | Zbl

[15] Ivanenko C. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:4 (1988), 503–514 | MR

[16] Liao G., “On harmonic maps. Mathematical aspects of numerical grid generation”, Frontiers in Appl. Math. SIAM. Philadelphia, 8:123 (1991) | MR

[17] Frey P. J., George P. L., Mesh generation, application to finite elements, Hermes Sci. Publs, Paris, Oxford, 2000 | MR | Zbl

[18] Glaccep A. G., Liseikin V. D., Kitaeva I. A., “Kontrolirovanie svoistv raznostnykh setok s pomoschyu monitornoi metriki”, Zh. vychisl. matem. i matem. fiz., 45:8 (2005), 1466–1483 | MR

[19] Klimova E. G., Morokov Yu. N., Rivin G. S. i dr., “Matematicheskaya otsenka zon zagryazneniya poverkhnosti zemli raketnym toplivom pri padenii otdelyayuschikhsya chastei raket-nositelei”, Optika atmosfery i okeana, 18:5–6 (2005), 525

[20] Classer A. H., Tang X. Z., “The SEL macroscopic modeling code”, Comput. Phys. Communs., 164 (2004), 237 | DOI

[21] Rognlien T. D., Xu X. Q., Hinmarsh A. C., “Application of parallel implicit methods to edge-plasma numerical simulations”, J. Comput. Phys., 175 (2002), 249 | DOI | Zbl