Sufficient close-to-necessary conditions for the blowup of solutions to a strongly nonlinear generalized Boussinesq equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1629-1637
Cet article a éte moissonné depuis la source Math-Net.Ru
An initial boundary value problem for the generalized Boussinesq equation with allowance for linear dissipation and free electron sources is considered. The strong generalized time-local solvability of the problem is proved. Sufficient conditions are obtained for the blowup of the solution and for time-global solvability. Two-sided estimates of the blowup time are derived.
@article{ZVMMF_2008_48_9_a8,
author = {M. O. Korpusov and A. G. Sveshnikov},
title = {Sufficient close-to-necessary conditions for the blowup of solutions to a~strongly nonlinear generalized {Boussinesq} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1629--1637},
year = {2008},
volume = {48},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a8/}
}
TY - JOUR AU - M. O. Korpusov AU - A. G. Sveshnikov TI - Sufficient close-to-necessary conditions for the blowup of solutions to a strongly nonlinear generalized Boussinesq equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1629 EP - 1637 VL - 48 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a8/ LA - ru ID - ZVMMF_2008_48_9_a8 ER -
%0 Journal Article %A M. O. Korpusov %A A. G. Sveshnikov %T Sufficient close-to-necessary conditions for the blowup of solutions to a strongly nonlinear generalized Boussinesq equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1629-1637 %V 48 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a8/ %G ru %F ZVMMF_2008_48_9_a8
M. O. Korpusov; A. G. Sveshnikov. Sufficient close-to-necessary conditions for the blowup of solutions to a strongly nonlinear generalized Boussinesq equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1629-1637. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a8/
[1] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya Sobolevskogo tipa, Fizmatlit, M., 2006 | Zbl
[2] Bonch-Bruevich V. L., Kalashnikov S. G., Fizika poluprovodnikov, Nauka, M., 1990
[3] Bonch-Bruevich V. L., Zvyagin I. P., Mironov A. G., Domennaya elektricheskaya neustoichivost v poluprovodnikakh, Nauka, M., 1972
[4] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhteorizdat, M., 1956