Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1619-1628 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary value problems for loaded ordinary and partial differential equations are considered. A priori bounds are obtained for solutions to differential and difference equations. These bounds imply the stability and convergence of difference schemes for the equations under consideration.
@article{ZVMMF_2008_48_9_a7,
     author = {A. A. Alikhanov and A. M. Berezgov and M. H. Shhanukov-Lafishev},
     title = {Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1619--1628},
     year = {2008},
     volume = {48},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a7/}
}
TY  - JOUR
AU  - A. A. Alikhanov
AU  - A. M. Berezgov
AU  - M. H. Shhanukov-Lafishev
TI  - Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1619
EP  - 1628
VL  - 48
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a7/
LA  - ru
ID  - ZVMMF_2008_48_9_a7
ER  - 
%0 Journal Article
%A A. A. Alikhanov
%A A. M. Berezgov
%A M. H. Shhanukov-Lafishev
%T Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1619-1628
%V 48
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a7/
%G ru
%F ZVMMF_2008_48_9_a7
A. A. Alikhanov; A. M. Berezgov; M. H. Shhanukov-Lafishev. Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1619-1628. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a7/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[2] Ilin V. A., Moiseev E. I., “Nelokalnaya zadacha dlya operatora Shturma–Liuvillya v differentsialnoi i raznostnoi traktovkakh”, Dokl. AN SSSR, 291:3 (1986), 534–540 | MR

[3] Tikhonov A. N., Samarskii A. A., “Ob odnorodnykh raznostnykh skhemakh”, Zh. vychisl. matem. i matem. fiz., 1:1 (1961), 5–63 | MR | Zbl

[4] Abdullaev V. M., Aida-zade K. P., “O chislennom reshenii nagruzhennykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1585–1595 | MR

[5] Nakhushev A. M., “Nagruzhennye uravneniya”, Differents. ur-niya, 19:1 (1983), 86–94 | MR | Zbl

[6] Anokhin Yu. A., Gorstko A. B., Dameshek L. Yu. i dr., Matematicheskie modeli i metody upravleniya krupnomasshtabnym vodnym ob'ektom, Nauka, Novosibirsk, 1987

[7] Andreev V. B., “O skhodimosti raznostnykh skhem, approksimiruyuschikh vtoruyu i tretyu kraevye zadachi dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 8:6 (1968), 1228–1231

[8] Samarskii A. A., “Odnorodnye raznostnye skhemy na neravnomernykh setkakh dlya uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 266–298 | MR

[9] Voevodin A. F., Shugrin S. M., Chislennye metody rascheta odnomernykh sistem, Nauka, SO AN SSSR, Novosibirsk, 1981 | MR