Asymptotic behavior of solutions to multiplicative control problems for elliptic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1607-1618
Voir la notice de l'article provenant de la source Math-Net.Ru
The problems of optimal multiplicative control for the Helmholtz equation and the diffusion equation are studied. The control function is included multiplicatively in a mixed-type boundary condition specified on the entire domain boundary or its part. For each of the models under study, an iterative method for determining an approximate solution is constructed and theoretically substantiated for sufficiently large values of the regularization parameter.
@article{ZVMMF_2008_48_9_a6,
author = {R. V. Brizitskii and A. S. Savenkova},
title = {Asymptotic behavior of solutions to multiplicative control problems for elliptic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1607--1618},
publisher = {mathdoc},
volume = {48},
number = {9},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a6/}
}
TY - JOUR AU - R. V. Brizitskii AU - A. S. Savenkova TI - Asymptotic behavior of solutions to multiplicative control problems for elliptic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1607 EP - 1618 VL - 48 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a6/ LA - ru ID - ZVMMF_2008_48_9_a6 ER -
%0 Journal Article %A R. V. Brizitskii %A A. S. Savenkova %T Asymptotic behavior of solutions to multiplicative control problems for elliptic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1607-1618 %V 48 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a6/ %G ru %F ZVMMF_2008_48_9_a6
R. V. Brizitskii; A. S. Savenkova. Asymptotic behavior of solutions to multiplicative control problems for elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1607-1618. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a6/